7
94
B. A. Brown, J. G. C. Veinot / Tetrahedron Letters 54 (2013) 792–795
Table 2
higher than those obtained when we employed the two-step
Tandem ozonolysis–dibromoolefination on alkenes
procedure. Importantly, this new tandem approach provides the
desired products with no evidence of oxidation, degradation, or
dimerisation.
Entry Alkene
DBO
Yielda
%)
(
In summary, we have shown oxidative alkene cleavage by
ozonolysis that can be coupled to a Corey–Fuchs type dibromoolef-
ination and have successfully generated synthetically valuable
dibromoolefins. This was achieved while realising good yields
without isolating the reactive aldehyde intermediate. We have
shown that this method can be applied successfully to a variety
of alkenes and that it avoids the potential for concentrating
ozonolysis mixtures that still contain ozonides.
Br
Br
Br
1
64
56
Br
Br
Br
Br
2
Br
Br
Acknowledgments
The authors thank the Natural Science and Engineering
Research Council of Canada (NSERC) and the University of Alberta
for continued generous financial support. We thank Dr. F.G. West
for his valued insight and discussions involved in developing this
chemistry. We also thank the Analytical and Instrumentation
Laboratory, Mass Spectrometry Facility, and NMR Laboratory in
the Department for Chemistry at the University of Alberta for
assistance in the characterisation of synthetic compounds.
3
4
65
24
Br
Br
Br
Br
Br
—
—
Supplementary data
5
Br
Br
Supplementary data (experimental details and full characterisa-
OH
1
13
tion data on all compounds along with the H and C NMR for all
HO
References and notes
5
6
4
6
1.
Selected references: (a) Wittig, G.; Geissler, G. Liebigs Ann. 1953, 580, 44; (b)
Bestmann, H. J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109; (c) Maryanoff, B. E.;
Reitz, A. B. Chem. Rev. 1989, 89, 863; (d) Nicolaou, K.; Harter, M. W.; Gunzner, J.
L.; Nadin, A. Liebigs Ann. Chem. 1997, 1283; (e) Edmonds, M.; Abell, A. Modern
Carbonyl Olefination 2004, 1.
6
a
2. (a) Syeferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379; (b)
Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521; (c) Roth, G.
J.; Liepold, B.; Müller, S.; Bestmann, H. J. Synthesis 2004, 59.
Isolated yields.
3
.
(a) Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745; (b)
Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769; (c) Grandjean, D.; Pale, P.;
Chuche, J. Tetrahedron Lett. 1994, 3529.
(a) Chodkiewicz, W. Ann. Chim. 1957, 2, 819; (b) Ratovelomanana, V.; Rollin, Y.;
Gébéhenne, C.; Gosmini, C.; Périchon, J. Tetrahedron Lett. 1994, 35, 4777.
(a) Jacobsen, M. F.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E. Org. Lett. 2005, 7,
perature (À20–0 °C) in a minimum amount of hexanes. The 1H
NMR showed only two singlets: d = 7.57 ppm (4H) and
d = 7.49 ppm (2H). The IR spectrum of the sample did not show sig-
nals consistent with O–H or sp3 C–H functional groups and the
4
.
.
5
641; (b) Jacobsen, M. F.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E. Tetrahedron
6 4
mass spectrum provides a molecular formula of C10H Br . Based
on this data we assert this product is 7 (Scheme 2). Oxidation of
2006, 62, 1675.
6. Eisler, S.; Tykwinski, R. R. J. Am. Chem. Soc. 2000, 122, 10736.
the benzylic alcohol during ozonolysis could result in the forma-
7. (a) Bailey, P. S. Ozonation in Organic Chemistry In Vol. 1; American Press: New
York, 1978; (b) MollatduJourdin, X.; Noshi, M.; Fuchs, P. L. Org. Lett. 2009, 11,
tion of 6, which reacts with the excess Z/C/P to form 7.15
5
43.
Schiaffo, C. E.; Dussault, P. H. J. Org. Chem. 2008, 73, 4688.
9. Schwartz, C.; Raible, J.; Mott, K.; Dussault, P. H. Org. Lett. 2006, 8, 3199.
Having established appropriate conditions for effective tandem
ozonolysis–dibromoolefination, we revisited the synthesis of 3
8.
1
0. Compound 5 was obtained when trying to produce nonanal from recovered
nonanoic acid during the ozonolysis procedure by first reducing 4 to nonanol
and then using a Swern oxidation to get the aldehyde.
(
Table 2, entry 6). The two resulting dibromoolefins, 3a and 3b,
were separated using flash column chromatography. The large dif-
ference between the R values of 3a and 3b, (0.73 and 0.44, respec-
11. (a) Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198; (b) Quesada, E.;
Taylor, R. J. K. Tetrahedron Lett. 2005, 46, 6473; (c) Maeher, H.; Uskokovic, M. R.;
Schaffner, C. P. Synth. Comm. 2009, 39, 299.
f
tively) allowed for effective isolation of the two products. While
yields were remained lower than those observed for the trans-
stilbene reaction (66% for 3a, 54% for 3b) they are substantially
12. (a) Schloss, J. D.; Paquette, L. A. Synth. Comm. 1998, 28, 2887; (b) Hon, Y.; Lu, L.;
Chang, R., et al Tetrahedron 2000, 56, 9269.
Scheme 2. Proposed formation of the unexpected product obtained for reaction with trans-4-stilbenemethanol.