Organometallics
Communication
(4) (a) Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.;
Milstein, D. Organometallics 2004, 23, 4026. (b) Junge, H.; Beller, M.
Tetrahedron Lett. 2005, 46, 1031.
(5) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2012,
51, 2772.
(6) Siggelkow, B.; Meder, M. B.; Galka, C. H.; Gade, L. H. Eur. J.
Inorg. Chem. 2004, 3424.
(7) (a) The methyl groups were also incorporated to prevent the
formation of homoleptic Ru complexes. (b) Camerano, J. A.;
Rodrigues, A.-S.; Rominger, F.; Wadepohl, H.; Gade, L. H. J.
Organomet. Chem. 2011, 696, 1425.
(8) The connectivity (Figure S3, Supporting Information) of 1 was
confirmed by single-crystal X-ray diffraction analysis.
(9) (a) Gagne, R. R.; Marritt, W. A.; Marks, D. N.; Siegl, W. O. Inorg.
Chem. 1981, 20, 3260. (b) Marks, D. N.; Siegl, W. O.; Gagne, R. R.
Inorg. Chem. 1982, 21, 3140. (c) Gagne, R. R.; Marks, D. N. Inorg.
Chem. 1984, 23, 65.
(10) (a) Zhao, J.; Hartwig, J. F. Organometallics 2005, 24, 2441.
(b) Montag, M.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2012, 134,
10325.
(11) (a) Jazzar, R. F. R.; Varrone, M.; Burrows, A. D.; Macgregor, S.
A.; Mahon, M. F.; Whittlesey, M. K. Inorg. Chim. Acta 2006, 359, 815.
(b) Nag, S.; Butcher, R. J.; Bhattacharya, S. Eur. J. Inorg. Chem. 2007,
1251.
(12) Different conditions were used: 15 mol % of 2 in 0.7 mL of
iPrOH using phenyltrimethylsilane as an internal standard.
(13) The yield of hydrogen gas was determined using Ph-TMS as an
internal standard and corrected for dissolved and free H2, using
Henry’s Law, with a constant of 0.01907.
dehydrogenation conditions (15 mol % of 2, 100 °C) selective
oxidation of the secondary alcohol was achieved (eq 2) as the
sole reaction product in 52% yield. To the best of our
knowledge, such chemoselective oxidation of secondary
alcohols in the presence of primary alcohols by homogeneous
catalysis are exceptionally rare.24
In conclusion, we have developed an amide-derived NNN-
Ru(II) hydride complex capable of catalyzing acceptorless
dehydrogenation and dehydrogenative couplings of secondary
and primary alcohols/diols, respectively, without requirements
of added exogenous base or acceptor additives. Although prior
reports demonstrated ADC reactivity of primary alcohols to
esters and H2, few catalysts accomplish this without base or
acceptor additives.3a,d,5,22a,25 Thus, when base-free, acceptorless
alcohol oxidation catalysts under moderate (<120 °C)
conditions are compared, the activity of 2 ranks among the
best known ADC catalysts. In addition, 2 is particularly
noteworthy because it mediates the chemoselective oxidation of
secondary alcohols in the presence of primary alcohols without
exogenous base or hydrogen acceptor additives, a difficult
selective transformation.24b Work is ongoing to elucidate the
mechanism of alcohol dehydrogenation, as well as the coupling
reactivity of primary alcohols. Furthermore, we are targeting
catalytic dehydrogenations of alternate polar substrates in order
to examine the scope of ADC reactions with alcohols and/or
amines.
(14) When it is dissolved in solution, complex 2 is air-sensitive; thus,
catalytic dehydrogenation is not tolerated in air.
(15) Monitoring the internal reaction temperature as a function of
time required 3.85 min for the reaction solution to reach 120 °C
(Figure S8, Supporting Information), consistent with temperature
equilibration as the primary contributor to the induction period.
(16) Toubiana, J.; Sasson, Y. Catal. Sci. Technol. 2012, 2, 1644.
(17) (a) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003,
198, 317. (b) Crabtree, R. H. Chem. Rev. 2012, 112, 1536. (c) This
test works best with Pt, Pd, and Ni metals, but there has been evidence
of Hg(0) affecting Ru(0) heterogeneous catalysts.16
(18) Bayram, E.; Finke, R. G. ACS Catal. 2012, 2, 1967−1975.
(19) (a) For example, the dehydrogenation of iPrOH to acetone and
H2 is endothermic by 16.5 kcal/mol, and the entropic contribution for
a reaction with H2 release at room temperature is 8 kcal/mol.
(b) Wiberg, K. B.; Crocker, L. S.; Morgan, K. M. J. Am. Chem. Soc.
1991, 113, 3447. (c) Watson, L. A.; Eisenstein, O. J. Chem. Educ. 2002,
79, 1269.
(20) Hydrogen as a Future Energy Carrier; Zuttel, A., Borgschulte, A.,
Schlapbach, L., Eds.; Wiley-VCH: Weinheim, Germany, 2008.
(21) Thermodynamically, the process of H2 formation from alcohols
is generally unfavorable. For example, the ΔG° value for formation of
H2 plus acetal from ethanol is 9.8 kcal/mol.
(22) (a) Murahashi, S.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. J. Org.
Chem. 1987, 52, 4319. (b) Lin, Y.; Zhu, X.; Zhou, Y. J. Organomet.
Chem. 1992, 429, 269. (c) Endo, Y.; Baeckvall, J.-E. Chem. Eur. J. 2011,
17, 12596. (d) Buntara, T.; Noel, S.; Phua, P. H.; Melian-Cabrera, I.;
de Vries, J. G.; Heeres, H. J. Angew. Chem., Int. Ed. 2011, 50, 7083.
(23) Muniz, K. Angew. Chem., Int. Ed. 2005, 44, 6622.
(24) (a) Manzini, S.; Urbina-Blanco, C. A.; Nolan, S. P.
Organometallics 2013, 32, 660. (b) de, G. C. F.; Peters, J. A.; van, B.
H.; Huskens, J. Synthesis 1994, 1007.
ASSOCIATED CONTENT
* Supporting Information
■
S
CIF files, text, figures, and tables giving crystallographic data for
1 and 2, experimental procedures, and characterizations of new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the University of Michigan Department of Chemistry
for generous support of this research and the NSF (CHE-
0840456) for X-ray instrumentation. Andrew Rizzi is gratefully
acknowledged for preliminary experiments on the dehydrogen-
ation of diols with 2.
REFERENCES
■
(1) Johnson, T. C.; Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010, 39,
81.
(25) Blum, Y.; Shvo, Y. J. Organomet. Chem. 1985, 282, C7.
(2) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
(3) (a) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem.
Soc. 2005, 127, 10840. (b) Nielsen, M.; Kammer, A.; Cozzula, D.;
Junge, H.; Gladiali, S.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 9593.
(c) Zhang, J.; Balaraman, E.; Leitus, G.; Milstein, D. Organometallics
2011, 30, 5716. (d) He, L.-P.; Chen, T.; Gong, D.; Lai, Z.; Huang, K.-
W. Organometallics 2012, 31, 5208.
D
dx.doi.org/10.1021/om4000677 | Organometallics XXXX, XXX, XXX−XXX