ChemComm
Communication
(
b) X. Carrier, J.-B. d’Espinose de la Caillerie, J.-F. Lambert and
M. Che, J. Am. Chem. Soc., 1999, 121, 3377; (c) J. Liu, F. Ort ´e ga,
P. Sethuraman, D. E. Katsoulis, C. E. Costello and M. T. Pope,
J. Chem. Soc., Dalton Trans., 1992, 1901; (d) G. M. Maksimov and
M. A. Fedotov, Russ. J. Inorg. Chem., 2001, 46, 327; (e) Q. H. Yang,
D. F. Zhou, H. C. Dai, J. F. Liu, Y. Xing, Y. H. Lin and H. Q. Jia,
Polyhedron, 1997, 16, 3985; ( f ) C. N. Kato, Y. Katayama, M. Nagami,
M. Katoa and M. Yamasaki, Dalton Trans., 2010, 39, 11469;
(
g) Y. Kikukawa, K. Yamaguchi, M. Hibino and N. Mizuno, Inorg.
Chem., 2011, 50, 12411.
6
7
(a) J. Wang, L. Yan, G. Qian, S. Li, K. Yang, H. Liu and X. Wang,
Tetrahedron, 2007, 63, 1826; (b) Y. Kikukawa, S. Yamaguchi,
Y. Nakagawa, K. Uehara, S. Uchida, K. Yamaguchi and N. Mizuno,
J. Am. Chem. Soc., 2008, 130, 15872; (c) C. N. Kato, M. Nagami and
N. Ukai, Appl. Catal., A, 2013, 452, 69.
(a) C. Boglio, G. Lemi `e re, B. Hasenknopf, S. Thorimbert, E. Lac ˆo te and
M. Malacria, Angew. Chem., Int. Ed., 2006, 45, 3324; (b) C. Boglio,
3
Fig. 2 Addition of (S)-1-phenyl-1,2-ethanediol (0–9 equiv.) to a CH CN solution
of TBA-1 (0.025 mM). Inset: absolute variation of the signal at 260 nm.
Analogous results have been obtained for the spectrophotometric
titration of TBA-1 and TBA-2 with 3,5-ditert-butylcatechol (DTBC),
where a marked increase in absorbance was observed at 385 nm,
likely resulting from chelate binding with an apparent 2:1 stoichio-
K. Micoine, P. Re
my, B. Hasenknopf, S. Thorimbert, E. Lac oˆ te,
´
M. Malacria, C. Afonso and J.-C. Tabet, Chem.–Eur. J., 2007, 13, 5426;
c) N. Dupr ´e , P. R ´e my, K. Micoine, C. Boglio, S. Thorimbert, E. Lac ˆo te,
B. Hasenknopf and M. Malacria, Chem.–Eur. J., 2010, 16, 7256.
8 (a) W. Adam, P. L. Alsters, R. Neumann, C. R. Saha-Mo
D. Seebach, A. K. Beck and R. Zhang, J. Org. Chem., 2003,
8, 8222; (b) W. Adam, P. L. Alsters, R. Neumann, C. R. Saha-M ¨o ller,
(
2a
¨
ller,
metry, as for the chiral ligand (Fig. S7 and S8, ESI†).
Under the turnover regime, POM stability has been assessed
6
2
1
by FT-IR, after precipitation of the spent catalysts. The main
spectral features of the polyanions were maintained when
studying them in acetonitrile (see for example the spectrum
of recovered TBA-1 in Fig. S9, ESI†). The indium analogue TBA-3
displayed a decreased stability (Fig. S10, ESI†).
D. Sloboda-Rozner and R. Zhang, J. Org. Chem., 2003, 68, 1721.
9 Crystallographic data, for NaRb-1: block-shaped crystal with dimen-
3
sions 0.40 Â 0.16 Â 0.09 mm , triclinic system, space group P1%(2),
with a = 12.5177(3) Å, b = 12.6671(4) Å, c = 15.7160(5) Å, a =
3
8
6.132(2)1 b = 82.6840(10)1, g = 83.438(2)1. V = 2451.95(12) Å and
Z = 1. NaNH
0
4
-2: plate-like crystal with dimensions 0.14 Â 0.11 Â
3
.04 mm , triclinic system, space group P1%(2), with a = 12.5011(5) Å,
It is noteworthy that the catalytic activity of 1 was retained in
b = 12.5288(5) Å, c = 15.9248(7) Å, a = 73.995(2)1 b = 88.077(2)1, g =
77.976(2)1, V = 2344.16(17) Å and Z = 1.
3
H O, as shown for the oxidation of cyclohexanol (pH = 6.5) by the
2
22
water-soluble POM salt (entry 25 of Table 1). In aqueous media, 10 D. Altermatt and I. D. Brown, Acta Crystallogr., Sect. B, 1985, 41, 244.
1
1 (a) G. A. Olah, S. Kobayashi and J. Nishimura, J. Am. Chem. Soc.,
however, the reaction rates slowed down, which was not unexpected
considering competition with water in the binding equilibria.
In conclusion, the novel Al-containing polyanions 1 and 2
are example of molecular metal oxides with enhanced Lewis
acidic properties. Further possibilities for multi-metallic Lewis
1
1
973, 95, 564; (b) A. Corma and H. Garc ´ı a, Chem. Rev., 2002,
02, 3837; (c) T. Yamaguchi, K. Matsumoto, B. Saito and
T. Katsuki, Angew. Chem., Int. Ed., 2007, 46, 4729; (d) D. Mandelli,
K. C. Chiacchio, Y. N. Kozlov and G. B. Shul’pin, Tetrahedron Lett.,
008, 49, 6693; (e) Z. Lei, G. Ma, L. Wei, Q. Yang and B. Su, Catal.
2
Lett., 2008, 124, 330.
acid-directed catalysis are under consideration. We also plan to 12 The catalytic system turns out to be less effective with aliphatic
primary alcohols, as in the case of 1-nonanol (36% yield in 3 h).
prepare the gallium derivatives of 1 and 2.
1
3 M. Carraro, N. H. Nsouli, H. Oelrich, A. Sartorel, A. Sorar u` , S. S. Mal,
G. Scorrano, L. Walder, U. Kortz and M. Bonchio, Chem.–Eur. J.,
2011, 17, 8371.
4 R. Neumann, A. M. Khenkin, D. Juwiler, H. Miller and M. Gara,
J. Mol. Catal. A: Chem., 1997, 117, 169.
5 (a) Y. Kikukawa, K. Yamaguchi and N. Mizuno, Angew. Chem., Int.
Ed., 2010, 49, 6096; (b) J. Wang, L. Yan, G. Li, X. Wang, Y. Ding and
J. Suo, Tetrahedron Lett., 2007, 46, 7023.
6 The coordination of chiral molecules to POMs has been exploited in
catalysis (see ref. 8), and for the resolution of chiral POMs see:
(a) M. Sadakane, M. H. Dickman and M. T. Pope, Inorg. Chem., 2001,
40, 2715; (b) J. F. Garvey and M. T. Pope, Inorg. Chem., 1978,
17, 1115.
U.K. thanks the German Science Foundation (DFG-KO-2288/3-2)
and Jacobs University for research support. We acknowledge the
ESF COST Actions D40 and CM1203 (PoCheMoN). The authors
thank Ms Valeria Feltrin for preliminary catalytic studies.
1
1
Notes and references
1
1
(a) Issue dedicated to polyoxometalates, U. Kortz (guest editor),
Eur. J. Inorg. Chem., 2009, 5055–5276; (b) Issue dedicated to poly-
oxometalates, L. Cronin and A. M u¨ ller (guest editors), Chem. Soc.
Rev., 2012, 41, 7325–7648; (c) Polyoxometalates Cluster Science
Issue, U. Kortz and T. Liu (guest editors), Eur. J. Inorg. Chem., 17 (a) M. Carraro, A. Sartorel, G. Scorrano, C. Maccato, M. H. Dickman,
2
013, 7325–7648; (d) M. T. Pope and U. Kortz, Polyoxometalates,
Encyclopedia of Inorganic and Bioinorganic Chemistry, 2013, DOI:
0.1002/9781119951438.eibc0185.pub2.
U. Kortz and M. Bonchio, Angew. Chem., Int. Ed., 2008, 47, 7275;
(b) U. Kortz, M. G. Savelieff, F. Y. A. Ghali, L. M. Khalil, S. A. Maalouf
and D. I. Sinno, Angew. Chem., Int. Ed., 2002, 41, 4070. For a general
overview on chiral POMs see also: (c) B. Hasenknopf, K. Micoine,
E. Lac ˆo te, S. Thorimbert, M. Malacria and R. Thouvenot, Eur. J.
Inorg. Chem., 2008, 5001.
1
2
(a) A. Sartorel, M. Carraro, G. Scorrano, B. S. Bassil, M. H. Dickman,
B. Keita, L. Nadjo, U. Kortz and M. Bonchio, Chem.–Eur. J., 2009, 15, 7854;
(
b) M. Carraro, A. Sartorel, F. M. Toma, F. Puntoriero, F. Scandola,
3
2
À1
S. Campagna, M. Prato and M. Bonchio, Top. Curr. Chem., 2011, 1; 18 (S)-1-Phenyl-1,2-ethanediol has y = À4.7 Â 10 deg cm dmol at
c) M. Bonchio, M. Carraro, A. Farinazzo, A. Sartorel, G. Scorrano and 260 nm, while it has negligible optical activity above 270 nm.
U. Kortz, J. Mol. Catal. A: Chem., 2007, 262, 36; (d) A. Sartorel, M. Truccolo, 19 (a) M. Carraro, G. Modugno, A. Sartorel, G. Scorrano and
(
S. Berardi, M. Gardan, M. Carraro, F. M. Toma, G. Scorrano, M. Prato and
M. Bonchio, Chem. Commun., 2011, 47, 1716.
M. Bonchio, Eur. J. Inorg. Chem., 2009, 5164; (b) X. Fang,
T. M. Anderson and C. L. Hill, Angew. Chem., Int. Ed., 2005, 44, 3540.
3
4
F. Zonnevijlle, C. M. Tourn ´e and G. F. Tourn ´e , Inorg. Chem., 1982, 20 A. Dolbecq, J.-D. Compain, P. Mialane, J. Marrot, E. Rivi `e re and
1, 2742.
F. S ´e cheresse, Inorg. Chem., 2008, 47, 3371.
(a) F. Hussain, M. Reicke, V. Janowski, S. de Silva, J. Futuwi and 21 Recharge of the reaction mixture containing benzyl alcohol with
2
U. Kortz, C. R. Chim., 2005, 8, 1045; (b) U. Kortz, M. G. Savelieff,
B. S. Bassil, B. Keita and L. Nadjo, Inorg. Chem., 2002, 41, 783.
(a) J. J. Cowan, A. J. Bailey, R. A. Heintz, B. T. Do, K. I. Hardcastle,
C. L. Hill and I. A. Weinstock, Inorg. Chem., 2001, 40, 6666;
2 2
another portion of H O gave 88% yield.
22 Similar results were obtained for other water soluble salts of POMs 1
and 2. A decreased hydrolytic stability of the polyanions in aqueous
medium has been observed using FT-IR on recovered 1 and 2.
5
7
916 Chem. Commun., 2013, 49, 7914--7916
This journal is c The Royal Society of Chemistry 2013