Dehydrogenation vs Oxygenation
J. Phys. Chem. A, Vol. 106, No. 7, 2002 1471
AcrH+ and the oxygenated products of R such as ROOH,
depending on the type of substituent R. The observed selectivi-
ties for the C(9)-H vs C(9)-C bond cleavage of AcrHR in the
DCA-photosensitized oxidation of AcrHR in the presence of
Sc3+ result from those for the cleavage of the C(9)-H vs
C(9)-C bond of AcrHR•+ depending on the type of substituent
1
R. The photoinduced electron transfer from AcrHR to DCA*
starts the electron-transfer radical chain reactions (Schemes 3
and 4) to yield the oxidation products. The essential role of
Sc3+ for the DCA-photosensitized oxidation of AcrHR may be
the strong binding of Sc3+ to O2•-, which retards the back
electron transfer leading to the oxidation of AcrHR. Singlet
oxygen plays no essential role in the oxidation of AcrHR.
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research Priority Area (No. 11228205)
from the Ministry of Education, Science, Culture and Sports,
Japan.
Figure 9. Dependence of the quantum yield (Φ) on [AcrHBut] for
the photooxidation of AcrHBut in the presence of DCA (1.0 × 10-4
M) and Sc3+ (1.0 × 10-3 M) in O2 saturated MeCN at 298 K.
Supporting Information Available: Derivation of eq 5 (S1).
This material is available free of charge via the Internet at http://
pubs.acs.org.
SCHEME 4
References and Notes
(1) Stryer, L. Biochemistry; Freeman: New York, 1988; Chapter 17.
(2) Babcock, G. T.; Wikstro¨m, M. Nature (London) 1992, 356, 301.
(3) (a) Fukuzumi, S. In Photoinduced Electron Transfer; Fox, M. A.,
Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part C, Chapter 10. (b)
Chanon, M.; Julliard, M.; Santamaria, J.; Chanon, F. New J. Chem. 1992,
16, 171.
(4) (a) Bodaness, R. S.; Chan, P. C. J. Biol. Chem. 1977, 252, 8554.
(b) Land, R. J.; Swallow, A. J. Biochim. Biophys. Acta 1971, 234, 34.
(5) Czochralska, B.; Kawczynski, W.; Bartosz, G.; Shugar, D. Biochim.
Biophys. Acta 1984, 801, 403.
(6) Cunningham, M. L.; Johnson, J. S.; Giovanazzi, S. M.; Peak, M.
J. Photochem. Photobiol. 1985, 42, 125.
(7) Fukuzumi, S.; Ishikawa, M.; Tanaka, T. J. Chem. Soc., Perkin
Trans. 2 1989, 1037.
•+
ΦH/ΦD value is ascribed to the hydrogen transfer from AcrH2
to O2•--Sc3+ (Scheme 1).
(8) (a) Foote, C. S. Acc. Chem. Res. 1968, 1, 104. (b) Kearns, D. R.
Chem. ReV. 1971, 71, 395. (c) Stephenson, L. M.; Grdina, M. J.;
Orfanopoulos, M. Acc. Chem. Res. 1980, 13, 419. (d) Foote, C. S.; Clennan,
E. L. Properties and Reactions of Singlet Oxygen. In ActiVe Oxygen in
Chemistry; Foote, C. S., Valentine, J. S., Greenberg, A., Liebman, J. F.,
Eds.; Chapman and Hall: New York, 1995; pp 105-140.
(9) (a) Bellus, D. AdV. Photochem. 1979, 11, 105. (b) Gorman, A. A.
AdV. Photochem. 1992, 17, 217. (c) Lissi, E. A.; Encinas, M. V.; Lemp,
E.; Rubio, M. A. Chem. ReV. 1993, 93, 699. (d) Adam, W.; Prein, M. Acc.
Chem. Res. 1996, 29, 275.
By applying the steady-state approximation to the radical
species (HO2• and AcrH•) in Scheme 1, the quantum yield (Φ)
is given as the function of the light intensity (In) and the
concentration of AcrH2 (eq 5)
Φ ) kp(Φ0/ktIn)1/2[AcrH2]
(5)
(10) (a) Sheu, C.; Foote, C. S. J. Am. Chem. Soc. 1995, 117, 474. (b)
Sheu, C.; Foote, C. S. J. Am. Chem. Soc. 1995, 117, 6439. (c) Adam, W.;
Saha-Mo¨ller, C. R.; Scho¨nberger, A. J. Am. Chem. Soc. 1996, 118, 9233.
(d) Raoul, S.; Cadet, J. J. Am. Chem. Soc. 1996, 118, 1892.
(11) (a) Duarte, V.; Gasparutto, D.; Yamaguchi, L. F.; Ravanat, J.-L.;
Martinez, G. R.; Medeiros, M. H. G.; Mascio, P. D.; Cadet, J. J. Am. Chem.
Soc. 2000, 122, 12622. (b) Greer, A.; Vassilikogiannakis, G.; Lee, K.-C.;
Koffas, T. S.; Nahm, K.; Foote, C. S. J. Org. Chem. 2000, 65, 6876. (c)
Bobrowski, M.; Liwo, A.; Oldziej, S.; Jeziorek, D.; Ossowski, T. J. Am.
Chem. Soc. 2000, 122, 8112. (d) Adam, W.; Peters, K.; Peters, E.-M.;
Schambony, S. B. J. Am. Chem. Soc. 2000, 122, 7610. (e) Cermola, F.;
Lorenzo, F. D.; Giordano, F.; Graziano, M. L.; Iesce, M. R.; Palumbo, G.
Org. Lett. 2000, 2, 1205. (f) Abdel-Shafi, A. A.; Wilkinson, F. J. Phys.
Chem. A 2000, 104, 5747. (g) Bernstein, R.; Foote, C. S. J. Phys. Chem. A
1999, 103, 7244.
(12) (a) Yoshioka, M.; Sakuma, Y.; Saito, M. J. Org. Chem. 1999, 64,
9247. (b) Dussault, P. H.; Schultz, J. A. J. Org. Chem. 1999, 64, 8419. (c)
Toutchkine, A.; Clennan, E. L. J. Org. Chem. 1999, 64, 5620. (d) Mori,
H.; Ikoma, K.; Isoe, S.; Kitaura, K.; Katsumura, S. J. Org. Chem. 1998,
63, 8704. (e) Stratakis, M.; Orfanopoulos, M.; Foote, C. S. J. Org. Chem.
1998, 63, 1315. (f) Nojima, T.; Ishiguro, K.; Sawaki, Y. J. Org. Chem.
1997, 62, 6911. (g) Ishiguro, K.; Hayashi, M.; Sawaki, Y. J. Am. Chem.
Soc. 1996, 118, 7265. (h) Fukuzumi, S.; Tanii, K.; Tanaka, T. J. Chem.
Soc., Perkin Trans. 2 1989, 2103.
where Φ0 is the quantum yield of the initiation step, kp is the
rate constant of the rate-determining propagation step, and kt is
the rate constant of the termination step (see the Supporting
Information S1 for the derivation of eq 5). The derived
dependence of Φ on [AcrH2] agrees with the experimental
results that the Φ value is proportional to the AcrH2 concentra-
tion (Figure 8a) and the reciprocal of the square root of the
light intensity (Figure 8b) and independent of the Sc3+
concentration (Figure 4).
In the case of AcrHBut as well, the Φ value increases linearly
with a further increase in the AcrHBut concentration, exceeding
unity (Figure 9). Eventually the same radical chain mechanism
as Scheme 3 may be applied to the DCA-photosensitized
oxygenation of AcrHBut. In the propagation step, however, the
C(9)-C bond of AcrHBut is cleaved rather than the C(9)-H
bond to yield ButOOH as shown in Scheme 4.
Conclusions
(13) Araki, Y.; Dobrowolski, D. C.; Goyne, T. E.; Hanson, D. C.; Jiang,
Z. Q.; Lee, K. J.; Foote, C. S. J. Am. Chem. Soc. 1984, 106, 4570.
(14) (a) Kanner, R. C.; Foote, C. S. J. Am. Chem. Soc. 1992, 114, 678.
(b) Kanner, R. C.; Foote, C. S. J. Am. Chem. Soc. 1992, 114, 682. (c)
In summary, photooxidation of AcrHR with O2 occurs
efficiently in the presence of DCA and Sc3+ under visible light
irradiation in O2-saturated MeCN to yield AcrR+ and H2O2 or