ChemComm
Communication
Notes and references
1 M. Poliakoff, J. M. Fitzpatrick, T. R. Farren and P. T. Anastas,
Science, 2002, 297, 807–810.
2 B. M. Trost, Science, 1991, 254, 1471–1477.
3 L. Veum and U. Hanefeld, Chem. Commun., 2006, 825–831.
4 M. E. Davis, Science, 2003, 300, 438–439.
5 M. J. Sabater, A. Corma, A. Domenech, V. Fornes and H. Garcia,
Chem. Commun., 1997, 1285–1286.
6 K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani and K. Kaneda,
J. Am. Chem. Soc., 2005, 127, 9674–9675.
7 F. Gelman, J. Blum and D. Avnir, J. Am. Chem. Soc., 2000, 122,
11999–12000.
8 C. W. Jones, K. Tsuji and M. E. Davis, Nature, 1998, 393, 52–54.
9 Y. L. Huang, B. G. Trewyn, H. T. Chen and V. S. Y. Lin, New J. Chem.,
2008, 32, 1311–1313.
Scheme 3 Synthesis of the acid-containing uncross-linked bottlebrush
copolymers.
10 E. L. Margelefsky, R. K. Zeidan and M. E. Davis, Chem. Soc. Rev.,
2008, 37, 1118–1126.
11 N. T. S. Phan, C. S. Gill, J. V. Nguyen, Z. J. Zhang and C. W. Jones,
Angew. Chem., Int. Ed., 2006, 45, 2209–2212.
12 F. Zhang, H. Y. Jiang, X. Y. Li, X. T. Wu and H. X. Li, ACS Catal.,
2014, 4, 394–401.
13 S. L. Poe, M. Kobaslija and D. T. McQuade, J. Am. Chem. Soc., 2006,
128, 15586–15587.
sequential reaction is carried out only in the presence of small-
molecule catalysts DMAP or PTSA with M1 or M2, only little
hydrolysis of acetal and little yield of target product C were
observed. As predicted, these small-molecular catalysts could
freely diffuse into the core of the CCBCs and deactivate the acidic
´
or basic groups through acid–base neutralization reactions. The 14 Y. Chi, S. T. Scroggins and J. M. Frechet, J. Am. Chem. Soc., 2008, 130,
6322–6323.
deactivated CCBCs could no longer catalyze the reaction cascade.
´
15 S. Hecht and J. M. Frechet, Angew. Chem., Int. Ed., 2001, 40, 74–91.
16 V. Rodionov, H. Gao, S. Scroggins, D. A. Unruh, A. J. Avestro and
This acid–base neutralization-induced deactivation was also con-
firmed by mixing both DMAP and PTSA in the reaction solution
(entry 4). Based on the above results, we conclude that CCBCs
provide effective site-isolation, preventing mutual deactivation of
incompatible core-bound catalytic groups.
´
J. M. Frechet, J. Am. Chem. Soc., 2010, 132, 2570–2572.
17 B. Helms, S. J. Guillaudeu, Y. Xie, M. McMurdo, C. J. Hawker and
´
J. M. Frechet, Angew. Chem., Int. Ed., 2005, 44, 6384–6387.
18 K. L. Beers, S. G. Gaynor, K. Matyjaszewski, S. S. Sheiko and M. Moller,
Macromolecules, 1998, 31, 9413–9415.
19 H. F. Gao and K. Matyjaszewski, Prog. Polym. Sci., 2009, 34, 317–350.
20 H. I. Lee, J. Pietrasik, S. S. Sheiko and K. Matyjaszewski, Prog. Polym.
Sci., 2010, 35, 24–44.
21 S. S. Sheiko, S. A. Prokhorova, K. L. Beers, K. Matyjaszewski, I. I.
Potemkin, A. R. Khokhlov and M. Moller, Macromolecules, 2001, 34,
8354–8360.
22 S. S. Sheiko, B. S. Sumerlin and K. Matyjaszewski, Prog. Polym. Sci.,
2008, 33, 759–785.
23 S. S. Sheiko, F. C. Sun, A. Randall, D. Shirvanyants, M. Rubinstein,
H. Lee and K. Matyjaszewski, Nature, 2006, 440, 191–194.
24 M. F. Zhang and A. H. E. Muller, J. Polym. Sci., Part A: Polym. Chem.,
2005, 43, 3461–3481.
25 R. Djalali, S. Y. Li and M. Schmidt, Macromolecules, 2002, 35, 4282–4288.
26 J. Yuan, H. Schmalz, Y. Xu, N. Miyajima, M. Drechsler, M. W. Moeller,
F. Schacher and A. H. E. Mueller, Adv. Mater., 2008, 20, 947–952.
27 J. Y. Yuan, M. Drechsler, Y. Y. Xu, M. F. Zhang and A. H. E. Muller,
Polymer, 2008, 49, 1547–1554.
28 J. Y. Yuan, Y. Y. Xu, A. Walther, S. Bolisetty, M. Schumacher,
H. Schmalz, M. Ballauff and A. H. E. Muller, Nat. Mater., 2008, 7,
718–722.
29 M. F. Zhang, M. Drechsler and A. H. E. Muller, Chem. Mater., 2004,
16, 537–543.
30 M. F. Zhang, C. Estournes, W. Bietsch and A. H. E. Muller,
Adv. Funct. Mater., 2004, 14, 871–882.
The importance of cross-linking in the CCBCs was estab-
lished by control experiments carried out with acid- or base-
containing uncross-linked bottlebrush copolymers. Because the
side chains in the bottlebrush copolymers will be cut off during
the process of phenylsulfonate ester deprotection, an alterna-
tive procedure was used to prepare the acid-containing uncross-
linked bottlebrush copolymers with a similar composition and
architecture as shown in Scheme 3. When the reaction cascade was
carried out by using uncross-linked catalysts M3 and M4, only 5%
yield of target product C was observed. Again, only 8% or 9% yield
of target product C was observed when either of these uncross-
linked catalysts M3 or M4 was used along with the complementary
CCBCs M1 or M2, respectively. We reasoned that the uncross-
linked bottlebrush copolymer can also penetrate the corona of the
CCBCs with the same deactivation effects as either small-molecular
PTSA or DMAP. Thus, the presence of cross-linking in the core layer
of bottlebrush copolymers appears to be essential for producing
site isolation effects for one-pot cascade reactions.
31 Y. Y. Xu, J. Y. Yuan, B. Fang, M. Drechsler, M. Mullner, S. Bolisetty,
M. Ballauff and A. H. E. Muller, Adv. Funct. Mater., 2010, 20, 4182–4189.
32 D. Neugebauer, Y. Zhang, T. Pakula, S. S. Sheiko and K. Matyjaszewski,
Macromolecules, 2003, 36, 6746–6755.
33 T. Pakula, Y. Zhang, K. Matyjaszewski, H. I. Lee, H. Boerner, S. H. Qin
and G. C. Berry, Polymer, 2006, 47, 7198–7206.
34 M. B. Runge and N. B. Bowden, J. Am. Chem. Soc., 2007, 129,
10551–10560.
35 J. Rzayev, Macromolecules, 2009, 42, 2135–2141.
36 B. R. Sveinbjornsson, R. A. Weitekamp, G. M. Miyake, Y. Xia, H. A.
Atwater and R. H. Grubbs, Proc. Natl. Acad. Sci. U. S. A., 2012, 109,
14332–14336.
In summary, we have developed a new system for preparing
site-isolated catalysts based on the core-confined bottlebrush
copolymers as support structures. By binding incompatible
organic acid and base into the core-confined section of CCBCs,
these acidic or basic groups can be effectively isolated and can
serve as catalysts for a one-pot cascade reaction. We believe that
this strategy can be further developed into a general pathway
for other incompatible catalyst systems, in which the efficiency
of organic synthesis will improve significantly.
37 Y. Xia, A. J. Boydston, Y. F. Yao, J. A. Kornfield, I. A. Gorodetskaya,
H. W. Spiess and R. H. Grubbs, J. Am. Chem. Soc., 2009, 131,
2670–2677.
38 Y. Xia, B. D. Olsen, J. A. Kornfield and R. H. Grubbs, J. Am. Chem.
Soc., 2009, 131, 18525–18532.
This work was supported by the National Natural Science
Foundation of China grant 51273066, the Shanghai Pujiang
Program grant 13PJ1402300 and the Large Instruments Open
Foundation of East China Normal University (No. 2014-15).
14780 | Chem. Commun., 2014, 50, 14778--14781
This journal is ©The Royal Society of Chemistry 2014