4894
A. S. Amarasekara et al. / Tetrahedron Letters 47 (2006) 4893–4895
Bakers Yeast
+
+
2
Sucrose
pH = 6.00 buffer
32 ºC
N
N N
2 R-CHO
R
+
_
O
_
O
R = Aryl
1a-f
3a-f
2
Figure 1.
Table 1.
NMR used in this study. W.H. thanks American Che-
mical Societies SEED program for summer research
fellowship.
Nitrone (1)
Reaction time (h)
Product
yield
2
3
1a, R = C6H5–
40
40
24
72
40
40
92
85
78
65
88
78
76
80
71
38a
70
88
References and notes
1b, R = p-CH3–C6H4–
1c, R = p-OCH3–C6H4–
1d, R = p-NO2–C6H4–
1e, R = o-OH–C6H4–
1f, R = 2-Furanyl–
1. (a) Tsuboi, S.; Sakamoto, J.; Kawano, T.; Utaka, M.;
Takada, A. J. Org. Chem. 1991, 56, 7177; (b) Tsuboi, S.;
Furutani, H.; Ansari, M. H.; Sakai, T.; Utaka, M.;
Takeda, A. J. Org. Chem. 1993, 58, 486; (c) Nakamura,
K.; Kawai, Y.; Nakajima, N.; Ohno, A. J. Org. Chem.
1991, 56, 4778; (d) Nakamura, K.; Kawai, Y.; Ohno, A.
Tetrahedron Lett. 1991, 32, 2927; (e) Nakamura, K.;
Kawai, Y.; Miyai, T.; Ohno, A. Tetrahedron Lett. 1990,
31, 3631; (f) Nakamura, K.; Kawai, Y.; Miyai, T.; Ohno,
A. Tetrahedron Lett. 1990, 31, 1159; (g) Org. Synth. Coll.
2004, 8, 312; (h) Org. Synth. 1990, 68, 56; (i) Org. Synth.
1985, 63, 1; (j) Org. Synth. Coll. 2004, 10, 84.
2. (a) Davey, C. L.; Powell, L. W.; Turner, N. J.; Wells, A.
Tetrahedron Lett. 1994, 35, 7867; (b) Takeshita, M.;
Yoshida, S.; Kiya, R.; Higuchi, N.; Kobayashi, Y. Chem.
Pharm. Bull. 1989, 37, 615; (c) Takeshita, M.; Yoshida, S.
Heterocycles 1990, 31, 2201; (d) Kamal, A. J. Org. Chem.
1991, 56, 2237; (e) Baik, W.; Han, J. L.; Lee, K. C.; Kim,
B. H.; Hahn, J. T. Tetrahedron Lett. 1994, 35, 3965; (f)
Baik, W.; Park, T. H. J. Org. Chem. 1995, 60, 5683.
3. (a) Takeshita, M.; Yoshida, S.; Kohno, Y. Heterocycles
a 12% p-Amino benzaldehyde was also found as a product.
In this study we have found that C,N-diphenyl nitrone11
(1a) converts into a mixture of azoxybenzene and benz-
aldehyde12 in 92% and 76% yields, respectively, when
incubated with Baker’s yeast–sucrose mixture in a
pH = 6.00 phosphate buffer medium for 40 h at 32 ꢀC
(Fig. 1).
In a control experiment with sucrose and pH = 6.00
phosphate buffer, in the absence of yeast, no hydrolysis
or decomposition was observed and all the nitrone could
be recovered unchanged after 72 h. In another experi-
ment carried out without sucrose, only about 10% of
the nitrone was converted into azoxybenzene and benz-
aldehyde and the remaining nitrone was recovered
unchanged. In an attempt to identify the intermediates
of this transformation, samples withdrawn after 6 and
24 h, were analyzed by NMR, after extraction into
methylenechloride. These samples showed only partial
conversions to the same products and unreacted nitrone,
and the attempts to observe any intermediates were not
successful.
1994, 37, 553; (b) Navarro-Ocana, A.; Jime˘nez-Estrada,
˜
´
´
M.; Gonzalez-Paredes, M. B.; Barzana, E. Synlett 1996,
695.
4. Baik, W.; Rhee, J. U.; Lee, S. H.; Lee, N. H.; Kim, B. H.;
Kim, K. S. Tetrahedron Lett. 1995, 36, 2793.
5. (a) Bianchi, G.; Comi, G.; Venturini, I. Gazz. Chim. Ital.
1994, 114, 285; (b) Easton, C. J.; Hughes, C. M.; Kirby,
K. D.; Savage, G. P.; Simpson, G. W.; Tiekink, E. R. T.
J. Chem. Soc., Chem. Commun. 1994, 2035.
6. (a) Takeshita, M.; Yoshida, S. Heterocycles 1990, 30, 871;
(b) Baik, W.; Kim, D. I.; Koo, S.; Ree, J. U.; Shin, S. H.;
Kim, B. H. Tetrahedron Lett. 1997, 38, 845.
7. Amarasekara, A. S. Tetrahedron Lett. 2005, 46, 2635.
8. (a) Goldstein, S.; Lestage, P. Curr. Med. Chem. 2000, 7,
1255; (b) Bergami, A.; Fracasso, C.; Caccia, S. Environ.
Toxicol. Pharmacol. 1997, 3, 289; (c) Thomas, C. E.;
Ohlweiler, D. F.; Taylor, V. L.; Schmidt, C. J. J.
Neurochem. 1997, 68, 1173.
Five other C-aryl-N-phenylnitrones11 (1b–f) also reacted
similarly to yield azoxybenzene (2) and the correspond-
ing aldehydes (3b–f) as shown in Table 1. Results show
that verity of C-aryl-N-phenylnitrones can undergo the
Saccharomyces cerevisiae mediated hydrolytic process
and electron withdrawing groups on the aryl ring
appears to retard the reaction as shown in the case of
C-p-nitrophenyl-N-phenylnitrone (1d) (Table 1).
9. (a) Chamulitrat, W.; Parker, C. E.; Tomer, K. B.; Mason,
R. P. Free Radical Res. 1995, 23, 1; (b) Atamna, H.; Paler-
´
In summary these results represent the first Baker’s yeast
mediated enzymatic transformation of the nitrone func-
tion and it appears to be an enzymatic hydrolysis
followed by a reduction of the intermediate led to the
formation of azoxybenzene.
Martınez, A.; Ames, B. N. J. Biol. Chem. 2000, 275,
6741.
10. Kim, T. R.; Kwang, I. Bull. Korean Chem. Soc. 1991, 12,
273.
11. Nelson, D. W.; Owens, J.; Hiraldo, D. J. Org. Chem. 2001,
66, 2572.
12. Typical procedure: C-aryl-N-phenylnitrone (0.635 mmol)
was dissolved in 10 mL of 95% ethanol and sucrose
(1.00 g) was added to this solution. Then 50 mL of
pH = 6.00 phosphate buffer was added and swirled for
5 min to dissolve the sucrose in the medium. Baker’s yeast
(Saccharomyces cerevisiae) (250 mg) was then added and
Acknowledgments
We gratefully acknowledge NSF (MRI Grant CHE-
0421290) for the funds used to purchase the 400 MHz