RSC Advances
Paper
Table 5 Comparison of catalytic activity with the reported catalysts for oxidation of benzyl alcohol and styrene
Catalyst
Reaction conditionsa
Solvent (mL)
% Conv.
Products (% select.)
TON
Ref.
TBA–SiW11Ruc
1 : 2 : 120 : 110b
0.7 : 30 : 24 : 80b
— : — : 8 : 100
100 : 25 : 24 : 90b
3 : 300 : 5 : 90g
100 : 25 : 8 : 80g
100 : 25 : 8 : 80g
3
1.6
—
—
10
—
—
36
22
65
340
—
—
9551
—
16
17
18
Mo–V–O oxided
>99
91.6
90
34.8
93.9
72
e
2.5% Au–2.5% Pd/TiO2
74.5
25.5
15.7
21.7
57
30% PMo11/Hbf
This work
19
8
Mo-exchanged zeolite
f
20% PMo11/ZrO2
11 329
20 975
30% PMo11/Hbf
This work
a
c
% Conversion is based on substrate; benzyl alcohol: amount of catalysts (mg): time (h): temperature (ꢀC). b Benzyl alcohol; solvent ¼ isobutyl
acetate/ d toluene; e 0.2 MPa pO2, f TBHP was used as an initiator, g styrene, product (benzaldehyde).
Notes and references
1 (a) B. Z. Zhan and A. Thompson, Tetrahedron, 2004, 60, 2917;
(b) N. Mizuno, Modern Heterogeneous Oxidation Catalysis,
Wiley-VCH, 2009.
2 T. Fey, H. Fischer, S. Bachmann, K. Albert and C. Bolm, J.
Org. Chem., 2001, 66, 8154.
3 G. Tojo and M. Fernández, Oxidation of Alcohols to Aldehydes
and Ketones, Springer, New York, 1st edn, 2006.
4 (a) Y. Ding, B. Ma, Q. Gao, G. Li, L. Yan and J. Suo, J. Mol.
Catal. A: Chem., 2005, 230, 121; (b) M. Li, J. Shen, X. Ge
and X. Chen, Appl. Catal., A, 2001, 206, 161; (c) M. T. Pope,
Inorganic Chemistry Concepts Vol. 8: Heteropoly and Isopoly
Oxometalates, Springer, Berlin, 1983.
5 C. L. Hill and C. M. P. McCartha, Coord. Chem. Rev., 1995,
143, 407.
6 J. A. R. Van Veen, O. Sundmeijer, C. A. Emeis and H. J. De
Wit, J. Chem. Soc., Dalton Trans., 1986, 1825.
Scheme 2 Possible mechanism for oxidation of alcohols and alkenes
over 30% PMo11/Hb.
7 L. A. C. Walker and C. L. Hill, Inorg. Chem., 1991, 30, 4016.
8 S. Pathan and A. Patel, Dalton Trans., 2011, 348.
9 A. Patel and S. Pathan, Ind. Eng. Chem. Res., 2012, 51, 732.
10 N. Narkhede, A. Patel and S. Singh, Dalton Trans., 2014, 2512.
11 N. Narkhede and A. Patel, RSC Adv., 2014, 4, 64379.
12 T. Okuhara, N. Mizuno and M. Misono, Adv. Catal., 1996, 41,
113.
13 J. C. Edwards, C. Y. Thiel, B. Benac and J. F. Knion, Catal.
Lett., 1998, 51, 77.
14 A. Sheldon, M. Walau, I. W. C. E. Arends and U. Schuchurdt,
Acc. Chem. Res., 1998, 31, 485.
15 N. Narkhede and A. Patel, J. Porous Mater., 2014, 21, 579.
16 K. Yamaguchi and N. Mizuno, New J. Chem., 2002, 26, 972.
17 F. Wang and W. Ueda, Catal. Today, 2009, 144, 358.
18 D. I. Enache, J. K. Edwards, P. Landon, B. S. Espriu,
A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely,
D. W. Knight and G. J. Hutchings, Science, 2006, 311, 362.
19 G. Xu, Q.-H. Xia, X.-H. Lu, Q. Zhang and H.-J. Zhan, J. Mol.
Catal. A: Chem., 2007, 266, 180.
4. Conclusion
In conclusion, a novel mono lacunary phosphomolybdate
anchored to zeolite-Hb was synthesized and efficiently charac-
terized. Catalytic study was carried out for solvent free aerobic
oxidation of benzyl alcohol and styrene. The applicability of the
method was extended to different alkenes and alcohols. In all
the cases a high TON >18 000 for alkenes and >3500 for alcohols
was found. A basic comparative study on effect of support was
carried out by comparing zeolite-Hb based catalyst with meso-
porous MCM-41 and it was found that acidity of supports play a
role in selectivity of the desired product. The catalyst can be
recovered aer simple ltration and can be recycled without any
signicant change in the conversion.
Acknowledgements
AP and SS are thankful to the Department of Science and
Technology for the nancial support (Project number-SR/S5/
GC-01/2009). Mr Nilesh Narkhede is thankful to CSIR, New
Delhi, for the award of Senior Research Fellowship (SRF).
20 K. Patel, B. K. Tripuramallu and A. Patel, Eur. J. Inorg. Chem.,
2011, 12, 1871.
21 S. Pathan and A. Patel, Chem. Eng. J., 2014, 243, 183.
36278 | RSC Adv., 2015, 5, 36270–36278
This journal is © The Royal Society of Chemistry 2015