Journal of the American Chemical Society
Communication
(9) Dong, T.; Li, J.; Huang, F.; Wang, L.; Tu, J.; Torimoto, Y.; Sadakata,
M.; Li, Q. Chem. Commun. 2005, 2724−2726.
often observed. In this system, however, the NIH shift was not observed
in the oxygenation reaction of toluene-4-d1. For details, see Scheme S4.
(42) Augusti, R.; Dias, A. O.; Rocha, L. L.; Lago, R. M. J. Phys. Chem. A
1998, 102, 10723−10727.
(10) Tang, Y.; Zhang, J. Transition Met. Chem. 2006, 31, 299−305.
(11) Thibon, A.; Bartoli, J.-F.; Guillot, R.; Sainton, J.; Martinho, M.;
Mansuy, D.; Banse, F. J. Mol. Catal. A: Chem. 2008, 287, 115−120.
(12) Conde, A.; Diaz-Requejo, M. M.; Perez, P. J. Chem. Commun.
2011, 47, 8154−8156.
(43) Emmert, M. H.; Cook, A. K.; Xie, Y. J.; Sanford, M. S. Angew.
Chem., Int. Ed. 2011, 50, 9409−9412.
(44) Ohkubo, K.; Kobayashi, T.; Fukuzumi, S. Angew. Chem., Int. Ed.
2011, 50, 8652−8655.
(45) Unfortunately, we could not detect any spectral change upon
addition of H2O2 to a solution of catalyst 2 at low temperature (below
−60 °C), under which conditions catalyst 3, supported by the less
hindered bepa ligand, generates a dinickel(III) bis(μ-oxo) species (see
ref 30).
(13) Shoji, O.; Kunimatsu, T.; Kawakami, N.; Watanabe, Y. Angew.
Chem., Int. Ed. 2013, 52, 6606−6610.
(14) Shul’pin, G. B.; Kozlov, Y. N.; Shul’pina, L. S.; Carvalho, W. A.;
Mandelli, D. RSC Adv. 2013, 3, 15065−15074.
(15) Raba, A.; Cokoja, M.; Herrmann, W. A.; Kuhn, F. E. Chem.
Commun. 2014, 50, 11454−11457.
(46) Shiren, K.; Ogo, S.; Fujinami, S.; Hayashi, H.; Suzuki, M.; Uehara,
A.; Watanabe, Y.; Moro-oka, Y. J. Am. Chem. Soc. 2000, 122, 254−262.
(47) Cho, J.; Furutachi, H.; Fujinami, S.; Tosha, T.; Ohtsu, H.; Ikeda,
O.; Suzuki, A.; Nomura, M.; Uruga, T.; Tanida, H.; Kawai, T.; Tanaka,
K.; Kitagawa, T.; Suzuki, M. Inorg. Chem. 2006, 45, 2873−2885.
(48) Hikichi, S.; Yoshizawa, M.; Sasakura, Y.; Komatsuzaki, H.; Moro-
oka, Y.; Akita, M. Chem.Eur. J. 2001, 7, 5011−5028.
(16) Sheldon, R. A.; Kochi, J. K. In Metal-Catalyzed Oxidations of
Organic Compounds; Sheldon, R. A., Kochi, J. K., Eds.; Academic Press:
New York, 1981; pp 315−339.
(17) Catalytic Oxidations with Hydrogen Peroxide as Oxidant; Strukul,
G., Ed.; Springer: Dordrecht, The Netherlands, 1992.
(18) Haggin, J. Chem. Eng. News 1993, 71 (22), 23−27.
(19) Cruse, R. W.; Kaderli, S.; Karlin, K. D.; Zuberbuehler, A. D. J. Am.
Chem. Soc. 1988, 110, 6882−6883.
(49) Itoh, S.; Bandoh, H.; Nakagawa, M.; Nagatomo, S.; Kitagawa, T.;
Karlin, K. D.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 11168−11178.
(50) Cho, J.; Sarangi, R.; Nam, W. Acc. Chem. Res. 2012, 45, 1321−
1330.
(20) Nasir, M. S.; Cohen, B. I.; Karlin, K. D. J. Am. Chem. Soc. 1992,
114, 2482−2494.
(21) Karlin, K. D.; Nasir, M. S.; Cohen, B. I.; Cruse, R. W.; Kaderli, S.;
Zuberbuehler, A. D. J. Am. Chem. Soc. 1994, 116, 1324−1336.
(22) Holland, P. L.; Rodgers, K. R.; Tolman, W. B. Angew. Chem., Int.
Ed. 1999, 38, 1139−1142.
(51) 14-tmc has also been reported to be able to stabilize dinickel(II)
peroxide species generated by the reaction between the corresponding
Ni(I) complex and molecular oxygen (see ref 52).
(52) Kieber-Emmons, M. T.; Schenker, R.; Yap, G. P. A.; Brunold, T.
C.; Riordan, C. G. Angew. Chem., Int. Ed. 2004, 43, 6716−6718.
(53) The oxygenation efficiency of benzene derivatives with catalyst 2
was found to decrease upon the introduction of electron-donating
substituents. This unusual selectivity of benzene oxygenation over
phenol oxygenation may be due to this tendency.
(23) Honda, K.; Cho, J.; Matsumoto, T.; Roh, J.; Furutachi, H.; Tosha,
T.; Kubo, M.; Fujinami, S.; Ogura, T.; Kitagawa, T.; Suzuki, M. Angew.
Chem., Int. Ed. 2009, 48, 3304−3307.
(24) Kunishita, A.; Doi, Y.; Kubo, M.; Ogura, T.; Sugimoto, H.; Itoh, S.
Inorg. Chem. 2009, 48, 4997−5004.
(25) Tano, T.; Doi, Y.; Inosako, M.; Kunishita, A.; Kubo, M.; Ishimaru,
H.; Ogura, T.; Sugimoto, H.; Itoh, S. Bull. Chem. Soc. Jpn. 2010, 83, 530−
538.
(26) Que, J. L.; Tolman, W. B. Angew. Chem., Int. Ed. 2002, 41, 1114−
1137.
(27) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004,
104, 1013−1046.
(28) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047−1076.
(29) Suzuki, M. Acc. Chem. Res. 2007, 40, 609−617.
(30) Itoh, S.; Bandoh, H.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S. J.
Am. Chem. Soc. 1999, 121, 8945−8946.
(31) Nagataki, T.; Ishii, K.; Tachi, Y.; Itoh, S. Dalton Trans. 2007,
1120−1128.
(32) The conversion of benzene was not identical to the yield because
of evaporation of benzene (∼10% in 5 h). This was confirmed by a blank
experiment.
(33) A large part of the H2O2 (44%) remained after the reaction.
(34) For catalyst 3, we observed ligand hydroxylation at the benzylic
position of the phenethyl arm in about 10% yield by 1H NMR analysis,
whereas we did not detect such a ligand-hydroxylated product with
catalyst 2. For details, see the SI.
(35) Cho, J.; Sarangi, R.; Annaraj, J.; Kim, S. Y.; Kubo, M.; Ogura, T.;
Solomon, E. I.; Nam, W. Nat. Chem. 2009, 1, 568−572.
(36) Kieber-Emmons, M. T.; Annaraj, J.; Seo, M. S.; Van Heuvelen, K.
M.; Tosha, T.; Kitagawa, T.; Brunold, T. C.; Nam, W.; Riordan, C. G. J.
Am. Chem. Soc. 2006, 128, 14230−14231.
(37) The concentrations of benzene, H2O2, and TEA were optimized
(see Table S2).
(38) After the reaction, 4.3 mmol of H2O2 (17% of the initial amount)
remained.
(39) Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies;
CRC Press: Boca Raton, FL, 2007.
(40) Kamata, K.; Yamaura, T.; Mizuno, N. Angew. Chem., Int. Ed. 2012,
51, 7275−7278.
(41) In aromatic oxygenation reactions, a shift of the deuteron on the
attacked carbon to the neighboring carbon (a so-called NIH shift) is
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX