Page 7 of 8
Cat Pa ll ey as si es dS oc ni eo nt ca ed j &u s Tt me ca hr gn i on sl ogy
DOI: 10.1039/C5CY00772K
Journal Name
ARTICLE
nanocomposites under UV light irradiation at room 10 (a) M. Murdoch1, G. I. N. Waterhouse, M. A. Nadeem, J. B.
temperature and ambient pressure. CO
2
as oxidant was
Metson, M. A. Keane, R. F. Howe, J. Liorca, H. Idriss, Nature
chemistry, 2011, 3, 489-492. (b) Y. Li, W.-N. Wang, Z. Zhan,
M.-H. Woo, C.-Y. Wu, P. Biswas, Appl. Catal. B: Environ, 2010,
100, 386.
reduced to methanol by photo-induced electrons acted. And
aromatic alcohol was used as reductant to react with photo-
generated holes, converting to aromatic aldehyde with high
selectivity. The optimal catalyst was ca.3wt % Ag/TiO
2
1
1 (a) L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong, N.
Guan, Nat. Commun.2015, 6, 5881. (b) S. Krejčíková, L.
Matějová, K. Kočí, L. Obalová, Z. Matěj, L. Čapek, O. Šolcová,
Appl. Catal. B: Environ, 2012, 111–112, 119.
nanoparticles. The maximum conversion of aromatic alcohol to
aldehyde is 91.7 % with selectivity of 98 %, and the highest
-1
yield of methanol is 358.7 μmol g under irradiation for 48
hours. Our findings may help to design more active
photocatalysis system for the reduction of carbon dioxide and
to open an environment-friendly strategy for the alcohol
selective oxidation based on photocatalysis.
1
1
1
1
1
1
2 Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Energy
Environ. Sci. 2012, 5, 9217–9233.
3 V. Puga , A. Forneli , H. García , A. Corma, Adv. Funct. Mater.
2
014, 24, 241-248.
4 T. Yokoyama, T. Setoyama, N. Fujita, M. Nakajima, T. Maki, K.
Fujii, Appl. Catal. A: General, 1992, 88, 149.
Acknowledgements
5 S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H.
Ohue, Y. Sakata, Journal of Catalysis, 2009,266, 279-285.
6 X. Lang, W. Ma, C. Chen, H. Ji, J. Zhao, Acc. Chem Res. 2014,
The support of the National Natural Science Foundation of
China (21363014, 21106059 and 21103082) is gratefully
acknowledged. This work was also supported by Natural
Science Foundation of Jiangxi Province of China (Grant No.
4
7, 355–363.
7 (a) S. Liang, L. Wen, S. Lin, J. Bi, P. Feng, X. Fu, L. Wu, Angew.
Chem. Int. Ed. 2014, 53, 2951-2955. (b) W. Chang, C. Sun, X.
Pang, H. Sheng, Y. Li, H. Ji, W. Song, C. Chen, W.Ma, J. Zhao,
Angew. Chem. Int. Ed. 2015, 54, 2052 –2056.
20142BCB23003 and 20143ACB21021)
Notes and references
1
1
2
2
2
2
2
2
8 A.Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc.
1
2
A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.
2
012, 134, 14526−14533.
T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature, 1979,
9 S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, J.
Catal. 2010, 274, 76-83.
2
77, 637-638.
3
(a) S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk,
Angew. Chem. Int. Ed. 2013, 52, 7372-7408. (b) X. Chen, J.
Wang, C. Huang, S. Zhang, H. Zhang, Z. Li, Z. Zou, Catal. Sci.
Technol. 2015, 5, 1758–1763.
0 D. Wang, Y. Duan, Q. Luo, X. Li, J. An, L. Bao L. Shi. J.
Materi. Chem, 2012. 22. 4847-4854.
1 Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, J. Wang. J.
Materi. Chem, A, 2014. 2. 824-832.
4
5
S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H.
Tanaka, T. Kajino, J. Am. Chem. Soc. 2011,133,15240-15243.
(a) J. Tripathy, K. Lee, P. Schmuki, Angew. Chem. Int. Ed.
2 Y. Li, H. Zhang , Z. Guo, J. Han, X. Zhao, Q. Zhao, S. Kim.
Langmuir, 2008, 24, 8351-8357.
3 J. M, Herrmann, J. Disdier, P. Pichat, J. Phys. Chem., 1986,
2
014, 53, 12605-12608. (b) J. Mao, T. Peng, X. Zhang, K. Li, L.
9
0, 6028-6034.
4 Y. Ji, B. Wang, Y. Luo, J. Phys. Chem. C. 2014, 118, 21457-
1462
Ye, L. Zan, Catal. Sci. Technol. 2013, 3, 1253--1260
6
7
(a) X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science, 2011, 331,746-
2
7
2
49. (b) J. Tripathy, K. Lee, P. Schmuki, Angew. Chem. Int. Ed.
5 D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov. Appl. Catal. A:
General, 2006, 63, 266-271.
014, 53, 12605-12608. (c) K. Varghese, M. Paulose, T. J.
Latempa, C. A. Grimes, Nano Lett. 2009, 9, 731-737.
(a) Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye,
Angew. Chem. Int. Ed. 2015, 54, 841-845. (b) C. Wang, R. L.
Thompson, J. Baltrus, C. Matranga, J. Phys. Chem. Lett., 2010,
1
2
, 48. (c) M. Xing, F. Shen, B. Qiu, J. Zhang, Science Reports,
014, 4, 6341. (d) Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C.
Pan, R. Xiong, J. Shi, J. Wei, Science Reports, 2014, 4, 7045.
(a)J. Pan, X. Wu, L. Wang, G. Liu, G. Q. Lu and H.-M. Cheng,
Chem. Commun., 2011, 47, 8361. (b) L-. L. Tan, S-.P. Chai, A.
R. Mohamed, ChemSusChem 2012, 5, 1868-1882.(c) L. Liu, C.
Zhao, D.Pitts, H. Zhao, Y. Li, Catal. Sci. Technol., 2014, 4,
8
9
1
539–1546
(a) H. Li , X. Zhang, D. R. MacFarlane, Adv. Energy Mater.
015, 5, 1401077. (b) Y. T. Liang, B. K. Vijayan, K. A. Gray, M.
C. Hersam, Nano Lett., 2011, 11, 2865.
.
2
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins