Paper
RSC Advances
Fig. 9(a). Considering higher concentration of 1 (7.8 ꢁ 10ꢀ5 M)
where 412 nm band is visible and adding drop wise portions of
6.1 ꢁ 10ꢀ2 M H2O2 causes slow decrease of 412 nm band along
with the generation of an isosbestic point at 313 nm; Fig. 9(b).
This band nally disappears up on the addition of excess of
H2O2 solution. Complex 2 presents very similar spectral
changes upon treating with a solution of H2O2 in methanol. The
nal spectral patterns {see Fig. 9(c) and (d)} are similar to the
one recorded for the peroxido complexes 3 and 4 indicating the
formation of similar peroxido complexes in solution upon the
addition of H2O2 to complexes 1 and 2, respectively.
5 K. C. Gupta and A. K. Sutar, Coord. Chem. Rev., 2008, 252,
1420–1450.
6 K. C. Gupta, A. K. Sutar and C. C. Lin, Coord. Chem. Rev.,
2009, 253, 1926–1946.
7 (a) J. A. L. da Silva, J. J. R. Frausto da Silva and
A. J. L. Pombeiro, Coord. Chem. Rev., 2011, 255, 2232–2248;
(b) M. Sutradhar, L. M. D. R. S. Martins, M. F. C. Guedes
da Silva and A. J. L. Pombeiro, Coord. Chem. Rev., 2015,
301–302, 200–239.
8 M. R. Maurya, J. Chem. Sci., 2011, 123, 215–228.
9 A. V. Biradar, M. K. Dongare and S. B. Umbarkar, Tetrahedron
Lett., 2009, 50, 2885–2888.
10 M. T. Raisanen, A. A. Hunaiti, E. Atosuo, M. Kemell,
M. Leskela and T. Repo, Catal. Sci. Technol., 2014, 4, 2564–
2573.
11 J. Taghavimoghaddam, G. P. Knowles and A. L. Chaffee, J.
Mol. Catal. A: Chem., 2012, 35, 879–888.
12 G. Chatela, C. Monniera, N. Kardosa, C. Voironc,
B. Andriolettib and M. Drayea, Appl. Catal., A, 2014, 478,
157–164.
13 M. M. D. Anna, M. Malia, P. Mastrorillia, P. Cotugno and
A. Monopoli, J. Mol. Catal. A: Chem., 2014, 386, 114–119.
14 (a) M. R. Maurya, N. Kumar and F. Avecilla, J. Mol. Catal. A:
Chem., 2014, 392, 50–60; (b) M. R. Maurya, S. Dhaka and
F. Avecilla, Polyhedron, 2014, 67, 145–159; (c) M. R. Maurya,
S. Dhaka and F. Avecilla, Polyhedron, 2014, 81, 154–167; (d)
M. R. Maurya, S. Dhaka and F. Avecilla, Polyhedron, 2015,
96, 79–87; (e) M. R. Maurya, S. Dhaka and F. Avecilla, New
J. Chem., 2015, 39, 2130–2139; (f) M. R. Maurya and
N. Kumar, J. Mol. Catal. A: Chem., 2015, 406, 204–212; (g)
M. R. Maurya, L. Rana and F. Avecilla, Inorg. Chim. Acta,
2015, 429, 138–147; (h) M. R. Maurya, N. Saini and
F. Avecilla, Polyhedron, 2015, 90, 221–232; (i) M. R. Maurya,
N. Saini and F. Avecilla, Inorg. Chim. Acta, 2015, 438, 168–
178.
Conclusions
The [MoVIO2]2+ complexes, [MoVIO2(L1)(MeOH)] 1 and [MoVIO2-
(L2)(MeOH)] 2, and their corresponding [MoVIO(O2)]2+ complexes,
[MoVIO(O2)(L1)(MeOH)] 3 and [MoVIO(O2)(L2)(MeOH)] 4 have
been prepared from potential tridentate ligands, 4-[3,5-bis(2-
hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (H2L1, I) and 3,5-
bis(2-hydroxyphenyl)-1-phenyl-1,2,4-triazole (H2L2, II) and char-
acterized. The single crystal X-ray study of 1a (i.e. DMSO coordi-
nated in place of methanol) and 2 conrms the dibasic tridentate
behavior of ligands. These complexes emerge out as efficient and
selective homogenous catalysts for the oxidation of bicyclic, cyclic
and aromatic alcohols in MeCN in the presence of N-based
additive (NEt3) where about 4–8 h was required to achieve the
equilibrium. However, in the absence of additive reactions take
about 24 h to reaching equilibrium. The N-based additive, NEt3,
abstracts hydrogen from H2O2 due to its strong basic nature
which in turns accelerates the formation of peroxido interme-
diate complex. This way it reduces the time period of the catalytic
reaction with equally good conversion.30 Thus, the additive plays
an important role in improving the catalytic efficiency of
complexes and reduces the time of oxidation considerably (24 h
to 4–8 h). Amongst the two type of complexes studied, the cata-
lytic potentials of [MoVIO(O2)]2+ complexes are slightly better than
[MoVIO2]2+ complexes. Reactivity of the [MoVIO2]2+ complexes
with H2O2 provides evidence for the possible peroxido interme-
diate species formation during the catalytic action.
15 G. J. J. Chen, J. W. McDonald and W. E. Newton, Inorg.
Chem., 1976, 15, 2612–2615.
16 S. Steinhauser, U. Heinz, M. Bartholoma, T. Weyhermuller,
H. Nick and K. Hegetschweiler, Eur. J. Inorg. Chem., 2004,
21, 4177–4192.
17 G. M. Sheldrick, SADABS, version 2.10, University of
¨
Gottingen, Germany, 2004.
References
18 G. M. Sheldrick, SHELX, Acta Crystallogr., Sect. A: Found.
Crystallogr., 2008, 64, 112–122.
19 A. Rezaeifard, I. Sheikhshoaie, N. Monadi and H. Stoeckli-
Evans, Eur. J. Inorg. Chem., 2010, 799–806.
20 A. Syamal and M. R. Maurya, Coord. Chem. Rev., 1989, 95,
183–238.
1 A. Kamimura, Y. Nozaki, M. Nishiyama and M. Nakayama,
RSC Adv., 2013, 3, 468–472.
2 X. T. Zhou, H. Bing and S. G. Liu, Tetrahedron Lett., 2013, 54,
3882–3885.
3 (a) C. Aellig, U. Neuenschwander and I. Hermans,
¨
ChemCatChem, 2012, 4, 525–529; (b) W. Feng, G. J. Wu, 21 (a) D. Wang, M. Ebel, C. Schulzke, C. Gruning, S. K. S. Hazari
L. D. Li and N. J. Guan, Green Chem., 2011, 13, 3265–3272;
(c) Y. Xie, Z. F. Zhang, S. Q. Hu, J. L. Song, W. J. Li and
B. X. Han, Green Chem., 2008, 10, 278–282; (d) B. Z. Zhan,
M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet,
and D. Rehder, Eur. J. Inorg. Chem., 2001, 935–942; (b)
J. C. Pessoa, M. J. Calhorda, I. Cavaco, I. Correia,
M. T. Duarte, V. Felix, R. T. Henriques, M. F. M. Piedade
and I. Tomaz, Dalton Trans., 2002, 4407–4415.
K. V. R. Rao, K. N. Robertson and T. S. Cameron, J. Am. 22 A. D. Keramidas, A. B. Papaioannou, A. Vlahos,
Chem. Soc., 2003, 125, 2195–2199.
4 D. Sahu, C. Sarmah and P. Das, Tetrahedron Lett., 2014, 55,
3422–3425.
T.
A.
Kabanos,
G.
Bonas,
A.
Makriyannis,
C. P. Rapropoulou and A. Terzis, Inorg. Chem., 1996, 35,
357–367.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 101076–101088 | 101087