Communication
ChemComm
Notes and references
1
A. L. Lehninger, D. L. Nelson and M. M. Cox, Principles
of Biochemistry, W. H. Freeman, New York, 5th edn, 2008.
2
(a) A. J. McConnell, C. S. Wood, P. P. Neelakandan and J. R. Nitschke,
Chem. Rev., 2015, 115, 7729–7793; (b) N. C. Gianneschi, M. S. Masar and
C. A. Mirkin, Acc. Chem. Res., 2005, 38, 825–837; (c) C. M. McGuirk,
J. Mendez-Arroyo, A. M. Lifschitz and C. A. Mirkin, J. Am. Chem. Soc.,
2
014, 136, 16594–16601; (d) C. W. Machan, M. Adelhardt, A. A. Sarjeant,
C. L. Stern, J. Sutter, K. Meyer and C. A. Mirkin, J. Am. Chem. Soc., 2012,
34, 16921–16924.
(a) J. Takaya and J. F. Hartwig, J. Am. Chem. Soc., 2005, 127,
1
3
4
5
6
5
756–5757; (b) A. B. Chaplin and P. J. Dyson, J. Organomet. Chem.,
011, 696, 2485–2490; (c) M. Otsuka, H. Yokoyama, K. Endob and
2
T. Shibata, Org. Biomol. Chem., 2012, 10, 3815–3818.
(a) U. Hintermair, S. W. Sheehan, A. R. Parent, D. H. Ess, D. T. Richens,
P. H. Vaccaro, G. W. Brudvig and R. H. Crabtree, J. Am. Chem. Soc., 2013,
Scheme 2 Synthesis and the molecular structure of complex 4.
135, 10837–10851; (b) A. Savini, P. Belanzoni, G. Bellachioma, C. Zuccaccia,
D. Zuccaccia and A. Macchioni, Green Chem., 2011, 13, 3360–3374.
(a) J. Li, S. Warratz, D. Zell, S. D. Sarkar, E. E. Ishikawa and L. Ackermann,
J. Am. Chem. Soc., 2015, 137, 13894–13901; (b) R. Prakash, K. Shekarrao
and S. Gogoi, Org. Lett., 2015, 17, 5264–5267; (c) S. Nakanowatari and
L. Ackermann, Chem. – Eur. J., 2015, 21, 16246–16251.
(a) V. S. Thirunavukkarasu, S. I. Kozhushkov and L. Ackermann,
Chem. Commun., 2014, 50, 29–39; (b) L. Ackermann, A. V. Lygin and
N. Hofmann, Angew. Chem., Int. Ed., 2011, 50, 6379–6382; (c) L.-L. Zhang,
L.-H. Li, Y.-Q. Wang, Y.-F. Yang, X.-Y. Liu and Y.-M. Liang, Organo-
metallics, 2014, 33, 1905–1908; (d) J. Kim, J. Kim and S. Chang,
Chem. – Eur. J., 2013, 19, 7328–7333.
which was devoid of para-cymene at the catalytic ruthenium(II)
center. Complex 4 was synthesized by heating complex 2 with
silver triflate (1.2 eq.) in acetonitrile under reflux conditions for
6
0 h (Scheme 2). Complex 4 was fully characterized by NMR
1
spectroscopic methods and X-ray diffraction analysis. H NMR
showed the absence resonance peaks related to the para-cymene
moiety whereas the resonance peaks related to the NHC back-
bone were found to be intact with the appropriate integration
ratio at the expected chemical shift values (see ESI† for details).
After successful synthesis of complex 4, we checked its intermediacy
in the catalytic oxidation reactions. Interestingly, complex 4 showed
almost equal activity as compared to complex 2 (Table 1), which
again suggested that activation of the pre-catalyst was a key step
during catalytic reactions.
7
(a) Y.-H. Chang, W.-J. Leu, A. Datta, H.-C. Hsiao, C.-H. Lin, J.-H. Guh
and J.-H. Huang, Dalton Trans., 2015, 44, 16107–16118;
(
b) J. Wettergren, E. Buitrago, P. Ryberg and H. Adolfsson, Chem. –
Eur. J., 2009, 15, 5709–5718; (c) M. C. Carri ´o n, F. Sep u´ lveda,
F. A. Jal ´o n and B. R. Manzano, Organometallics, 2009, 28, 3822–3833.
8 (a) W.-P. Yip, W.-Y. Yu, N. Zhu and C.-M. Che, J. Am. Chem. Soc., 2005,
27, 14239–14249; (b) C.-M. Che, W.-Y. Yu, P.-M. Chan, W.-C. Cheng,
S.-M. Peng, K.-C. Lau and W.-K. Li, J. Am. Chem. Soc., 2000, 122,
1380–11392; (c) E. A. Nyawade, H. B. Friedrich, B. Omondi and
1
1
P. Mpungose, Organometallics, 2015, 34, 4922–4931; (d) M. Poyatos,
J. A. Mata, E. Falomir, R. H. Crabtree and E. Peris, Organometallics,
In conclusion, we demonstrated that the loss of para-cymene
2003, 22, 1110–1114; (e) P. Daw, R. Petakamsetty, A. Sarbajna, S. Laha,
is a necessary step to generate the active catalyst, starting from
R. Ramapanicker and J. K. Bera, J. Am. Chem. Soc., 2014, 136,
13987–13990; ( f ) Y. Xu and X. Wan, Tetrahedron Lett., 2013, 54, 642–645.
(a) W. Chen, F. N. Rein and R. C. Rocha, Angew. Chem., Int. Ed., 2009,
II
[
L Ru (para-cymene)]-based catalyst precursors for the oxidative
n
9
conversion of olefins and alkynes to oxygenated products. A
4
8, 9672–9675; (b) D. Chaoab and W.-F. Fu, Chem. Commun., 2013,
II
simple coordination complex unit, such as Ru (terpy) , remotely
2
49, 3872–3874; (c) A. Inagaki, H. Nakagawa, M. Akita, K. Inoue,
M. Sakai and M. Fujii, Dalton Trans., 2008, 6709–6723.
II
attached by a phenyl linker of the ligand backbone to the [Ru (para-
1
0 (a) B. Y. Lee, G. C. Bazan, J. Vela, Z. J. A. Komon and X. Bu, J. Am.
Chem. Soc., 2001, 123, 5352–5353; (b) J. D. Azoulay, Z. A. Koretz,
G. Wu and G. C. Bazan, Angew. Chem., Int. Ed., 2010, 49, 7890–7894;
(c) Y. H. Kim, T. H. Kim and B. Y. Lee, Organometallics, 2002, 21,
cymene)] catalytic site, was found to be highly effective in
accelerating the loss of para-cymene to generate the active catalyst
under oxidizing conditions, and thereby in boosting the overall
catalytic activity. This strategy of using a ‘‘remote booster’’ to tune
the catalytic activity seems to be general in other reactions as well.
A detailed mechanistic study is underway in our laboratory to
generalize the concept.
3
082–3084.
1
1 (a) A. L. Liberman-Martin, R. G. Bergman and T. D. Tilley, J. Am.
Chem. Soc., 2013, 135, 9612–9615; (b) H. Guo, Z. Chen, F. Mei,
D. Zhu, H. Xiong and G. Yin, Chem. – Asian J., 2013, 8, 888–891.
2 V. Leigh, W. Ghattas, R. Lalrempuia, H. M u¨ ller-Bunz, M. T. Pryce
and M. Albrecht, Inorg. Chem., 2013, 52, 5395–5402.
1
1
J. C. sincerely thanks DST and IISER Bhopal for generous
financial support. S. K. G. thanks CSIR for doctoral fellowship.
3 C. Bhaumik, S. Das, D. Maity and S. Baitalik, Dalton Trans., 2012, 41,
2427–2438.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016