Communication
Since charge-transfer bands have been described for Cu –
ChemComm
2
+
E. I. Solomon and K. D. Karlin, Inorg. Chem., 2006, 45, 10055; (c) D.-H. Lee,
L. Q. Hatcher, M. A. Vance, R. Sarangi, A. E. Milligan, A. A. Narducci
Sarjeant, C. D. Incarvito, A. L. Rheingold, K. O. Hodgson, B. Hedman,
E. I. Solomon and K. D. Karlin, Inorg. Chem., 2007, 46, 6056; (d) S. Kim,
J. Y. Lee, R. E. Cowley, J. W. Ginsbach, M. A. Siegler, E. I. Solomon and
K. D. Karlin, J. Am. Chem. Soc., 2015, 137, 2796.
(a) I. Castillo, V. M. Ugalde-Sald ´ı var, L. A. Rodr ´ı guez Solano, B. N. S ´a nchez
Egu ´ı a, E. Zeglio and E. Nordlander, Dalton Trans., 2012, 41, 9394;
(b) P. R. Mart ´ı nez-Alanis, B. N. S ´a nchez Egu ´ı a, V. M. Ugalde-Sald ´ı var,
I. Regla, P. Demare, G. Aull ´o n and I. Castillo, Chem. – Eur. J., 2013,
6a,24,25a
hydroperoxo complexes around 360 nm,
rapid H-abstraction from solvent, we ruled out such [L Cu–OOH]
species as the observed oxygenation products of [L Cu] . Cu –
which may form by
n
+
n
+
2+
hydroperoxides were prepared by addition of 5–10 equiv. of 1 : 1
7
n
2+
H
2
O
2
/Et
3
N THF solutions to the appropriate [L Cu] sources. In
addition to being relatively stable at room temperature and ESR-
n
+
active, the electronic spectra are distinct from those of [L CuO
2
]
1
9, 6067; (c) I. Castillo, B. N. S ´a nchez-Egu ´ı a, P. R. Mart ´ı nez-Alanis,
V. M. Ugalde-Sald ´ı var and M. Flores-Alamo, Polyhedron, 2015, 85, 824.
8 B. U
¨
lk u¨ seven, I. Kizilcikli, A. Tavman and B. Akkurt, Rev. Inorg.
(
Fig. S35–S42, ESI†), with shoulders around 330 and 310 nm
2
+
potentially due to S - Cu charge-transfer bands of thioether-
bound cupric–hydroperoxos.
of [L Cu–OOH] at 20–40 1C resulted in only trace amounts of
6
a,7
Chem., 2001, 21, 369.
Addition of DHA to solutions
9
S. T. Prigge, A. S. Kolhekar, B. A. Eipper, R. E. Mains and
L. M. Amzel, Science, 1997, 278, 1300.
n
+
oxidation products (Fig. S50 and S51, ESI†), excluding them as 10 (a) D. J. E. Spencer, N. W. Aboelella, A. M. Reynolds, P. L. Holland
and W. B. Tolman, J. Am. Chem. Soc., 2002, 124, 2108;
efficient H-abstraction agents.
(
b) N. W. Aboelella, E. A. Lewis, A. M. Reynolds, W. W. Brennessel,
3
In summary, benzimidazole-based N S ligands support side-on
C. J. Cramer and W. B. Tolman, J. Am. Chem. Soc., 2002, 124, 10660;
(c) N. W. Aboelella, S. V. Kryatov, B. F. Gherman, W. W. Brennessel,
V. G. Young, Jr., R. Sarangi, E. V. Rybak-Akimova, K. O. Hodgson,
B. Hedman, E. I. Solomon, C. J. Cramer and W. B. Tolman, J. Am.
Chem. Soc., 2004, 126, 16896; (d) N. W. Aboelella, B. F. Gherman,
L. M. R. Hill, J. T. York, N. Holm, V. G. Young, Jr., C. J. Cramer and
W. B. Tolman, J. Am. Chem. Soc., 2006, 128, 3445.
cupric–superoxo complexes as ground state triplets, in contrast to
the prevalent view of side-on superoxos as singlets exclusively. The
long Cu–O bonds opposite to the strong Cu–N s-bonds in square
n
2
+
pyramidal [L Cu–Z -O ] arise from the small overlap between the
2
Ã
Cu dx2–y and the O
2
p
orbitals, giving rise to the triplet ground
2
s
11 (a) M. J. Baldwin, D. E. Root, J. E. Pate, K. Fujisawa, N. Kitajima and
E. I. Solomon, J. Am. Chem. Soc., 1992, 114, 10421; (b) H. V. Obias,
Y. Lin, N. N. Murthy, E. Pidcock, E. I. Solomon, M. Ralle,
N. J. Blackburn, Y.-M. Neuhold, A. D. Zuberb u¨ hler and
K. D. Karlin, J. Am. Chem. Soc., 1998, 120, 12960; (c) E. Pidcock,
H. V. Obias, M. Abe, H.-C. Liang, K. D. Karlin and E. I. Solomon,
J. Am. Chem. Soc., 1999, 121, 1299.
12 (a) L. Santagostini, M. Gullotti, E. Monzani, L. Casella, R. Dillinger and
F. Tuczek, Chem. – Eur. J., 2000, 6, 519; (b) G. Battaini, M. De Carolis,
E. Monzani, F. Tuczek and L. Casella, Chem. Commun., 2003, 726.
3 X. Ottenwaelder, D. J. Rudd, M. C. Corbett, K. O. Hodgson,
B. Hedman and T. D. P. Stack, J. Am. Chem. Soc., 2006, 128, 9268.
4 Y. Funahashi, T. Nishikawa, Y. Wasada-Tsutsui, Y. Kajita,
S. Yamaguchi, H. Arii, T. Ozawa, K. Jitsukawa, T. Tosha, S. Hirota,
T. Kitagawa and H. Masuda, J. Am. Chem. Soc., 2008, 130, 16444.
5 Y. Kobayashi, K. Ohkubo, T. Nomura, M. Kubo, N. Fujieda,
H. Sugimoto, S. Fukuzumi, K. Goto, T. Ogura and S. Itoh, Eur.
J. Inorg. Chem., 2012, 4574.
states. Despite being strong s-donors, benzimidazoles give rise to
copper complexes that are more electrophilic than their pyridine-
+
n
+/2+ 7c
based analogues (E1/2 B À170 mV vs. Fc /Fc for [L Cu]
,
6d
compared to À470 mV for pyridine-based N
3
S systems). This
+
may arise from stabilisation of Cu complexes by a low-lying
7a
LUMO, setting benzimidazoles apart from related nitrogen
donors, and enhancing H-abstraction. The methylthioether in
2
+
1
[
L CuO ] directs H-abstraction from DHA without further oxida-
2
M
tion, placing it as a close analogue of the Cu site of PHM. In this
1
context, the thioethers are weak donors, and may even act as
hemilabile ligands. Their role in triplet side-on superoxo complexes
in related chemical and biochemical systems awaits further
evaluation.
1
1
6 J. W. Ginsbach, R. L. Peterson, R. E. Cowley, K. D. Karlin and
E. I. Solomon, Inorg. Chem., 2013, 52, 12872.
We thank Prof. E. I. Solomon, J. W. Ginsbach for rR; Prof.
J. J. Garc ´ı a for GC-MS; S. Hern ´a ndez-Ortega for crystallography,
17 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73.
V. G o´ mez-Vidales for ESR, R. Pati n˜ o for IR, M. Orta for EA, B. 18 (a) K. Fujisawa, M. Tanaka, Y. Moro-oka and N. Kitajima, J. Am. Chem.
Quiroz, R. Gavi n˜ o for DOSY and VT-NMR, L. R ´ı os for ESI-MS.
Funding by Conacyt (151837, 254496), PAPIIT (IN210214), IANAS.
Soc., 1994, 116, 12079; (b) P. Chen, D. E. Root, C. Campochiaro,
K. Fujisawa and E. I. Solomon, J. Am. Chem. Soc., 2003, 125, 466.
9 (a) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988,
1
88, 899; (b) K. B. Wiberg, Tetrahedron, 1968, 24, 1083.
Notes and references
20 D. Maiti, J. S. Woertink, A. A. Narducci Sarjeant, E. I. Solomon and
K. D. Karlin, Inorg. Chem., 2008, 47, 3787.
1
(a) L. M. Mirica, X. Ottenwaelder and T. D. P. Stack, Chem. Rev., 21 C. Citek, B.-L. Lin, T. E. Phelps, E. C. Wasinger and T. D. P. Stack,
2
1
2
004, 104, 1013; (b) E. A. Lewis and W. B. Tolman, Chem. Rev., 2004,
04, 1047; (c) R. A. Himes and K. D. Karlin, Curr. Opin. Chem. Biol., 22 (a) A. Kunishita, M. Kubo, H. Sugimoto, T. Ogura, K. Sato, T. Takui
009, 13, 119; (d) E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W.
J. Am. Chem. Soc., 2014, 136, 14405.
and S. Itoh, J. Am. Chem. Soc., 2009, 131, 2788; (b) R. L. Peterson,
R. A. Himes, H. Kotani, T. Suenobu, L. Tian, M. A. Siegler,
E. I. Solomon, S. Fukuzumi and K. D. Karlin, J. Am. Chem. Soc.,
2011, 133, 1702.
Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H.
Kjaergaard, R. G. Hadt and L. Tian, Chem. Rev., 2014, 114, 3659.
R. L. Lieberman and A. C. Rosenzweig, Nature, 2005, 434, 177.
2
3
(a) S. T. Prigge, B. A. Eipper, R. E. Mains and L. M. Amzel, Science, 23 D. Maiti, D.-H. Lee, K. Gaoutchenova, C. W u¨ rtele, M. C. Holthausen,
2
004, 304, 864; (b) J. P. Klinman, J. Biol. Chem., 2006, 281, 3013.
M. Monastirioti, C. E. Linn, Jr. and K. White, J. Neurosci., 1996,
6, 3900.
(a) P. Chen and E. I. Solomon, J. Am. Chem. Soc., 2004, 126, 4991;
b) P. Chen and E. I. Solomon, Proc. Natl. Acad. Sci. U. S. A., 2004,
01, 13105.
A. A. Narducci Sarjeant, J. Sundermeyer, S. Schindler and
K. D. Karlin, Angew. Chem., Int. Ed., 2008, 47, 82.
24 T. Fujii, A. Naito, S. Yamaguchi, A. Wada, Y. Funahashi,
K. Jitsukawa, S. Nagatomo, T. Kitagawa and H. Masuda, Chem.
Commun., 2003, 2700.
25 (a) A. Wada, M. Harata, K. Hasegawa, K. Jitsukawa, H. Masuda,
M. Mukai, T. Kitagawa and H. Einaga, Angew. Chem., Int. Ed., 1998,
37, 798; (b) Y. J. Choi, K.-B. Cho, M. Kubo, T. Ogura, K. D. Karlin,
J. Cho and W. Nam, Dalton Trans., 2011, 40, 2234.
4
5
1
(
1
6
(a) M. Kodera, T. Kita, I. Miura, N. Nakayama, T. Kawata, K. Kano and
S. Hirota, J. Am. Chem. Soc., 2001, 123, 7715; (b) L. Q. Hatcher, D.-H. Lee,
M. A. Vance, A. E. Milligan, R. Sarangi, K. O. Hodgson, B. Hedman,
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015