10.1002/cctc.201700851
ChemCatChem
FULL PAPER
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
D. V. Bavykin, F. C. Walsh, Titanate and Titania Nanotubes :
Synthesis, 2009.
A. Villa, D. Wang, G. M. Veith, F. Vindigni, L. Prati, Catalysis
Science & Technology 2013, 3, 3036-3041.
D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, L. Torrente-Murciano,
J. M. Friedrich, F. C. Walsh, Topics in Catalysis 2006, 39, 151-160.
Á. Kukovecz, K. Kordás, J. Kiss, Z. Kónya, Surface Science
Reports 2016, 71, 473-546.
L. Torrente-Murciano, Q. He, G. J. Hutchings, C. J. Kiely, D.
Chadwick, ChemCatChem 2014, 6, 2531-2534.
L. Torrente-Murciano, T. Villager, D. Chadwick, ChemCatChem
2015, 7, 925-927.
D. Nepak, S. Darbha, Catalysis Communications 2015, 58, 149–
153.
T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara,
Langmuir 1998, 14, 3160-3163.
F. Porta, L. Prati, M. Rossi, S. Coluccia, G. Martra, Catalysis
Today 2000, 61, 165-172.
N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. F. Carley, R.
Tiruvalam, C. J. Kiely, D. Bethell, G. J. Hutchings, Phys Chem
Chem Phys 2009, 11, 5142-5153.
N. Dimitratos, F. Porta, L. Prati, Applied Catalysis A: General
2005, 291, 210-214.
J. Wang, S. A. Kondrat, Y. Wang, G. L. Brett, C. Giles, J. K.
Bartley, L. Lu, Q. Liu, C. J. Kiely, G. J. Hutchings, ACS Catalysis
2015, 5, 3575-3587.
S. K. Pradhan, Y. Mao, S. S. Wong, P. Chupas, V. Petkov,
Chemistry of Materials 2007, 19, 6180-6186.
T. Gao, H. Fjellvåg, P. Norby, Inorganic Chemistry 2009, 48, 1423-
1432.
E. Morgado, M. A. S. de Abreu, G. T. Moure, B. A. Marinkovic, P.
M. Jardim, A. S. Araujo, Chemistry of Materials 2007, 19, 665-676.
L. Prati, A. Villa, Acc Chem Res 2014, 47, 855-863.
M.-C. Daniel, D. Astruc, Chemical Reviews 2004, 104, 293-346.
J. A. Lopez-Sanchez, N. Dimitratos, C. Hammond, G. L. Brett, L.
Kesavan, S. White, P. Miedziak, R. Tiruvalam, R. L. Jenkins, A. F.
Carley, D. Knight, C. J. Kiely, G. J. Hutchings, Nat Chem 2011, 3,
551-556.
B. Pawelec, A. M. Venezia, V. La Parola, E. Cano-Serrano, J. M.
Campos-Martin, J. L. G. Fierro, Applied Surface Science 2005,
242, 380-391.
I. Gandarias, P. J. Miedziak, E. Nowicka, M. Douthwaite, D. J.
Morgan, G. J. Hutchings, S. H. Taylor, ChemSusChem 2015, 8,
473-480.
instrument was calibrated with authenticated standards (Sigma
Aldrich) containing predetermined amounts of each metal. The
average particle size and distribution of the metal NPs were
determined from high resolution transmission electron
microscopy (HRTEM) images. Scanning transmission electron
microscopy (STEM) and HRTEM images were collected using a
JEOL JEM-2100F microscope operating at 200 kV.. Samples
were dispersed in ethanol and sonicated for 30 minutes before
they were placed on copper grids with a holey carbon film (300
mesh size). The particle size distribution and average particle
size were determined by analysing 100 randomly selected
nanoparticles in each catalyst sample. Energy Dispersive X-Ray
Analysis (EDX) provided elemental analysis and was carried out
using a X-MaxN 80 T Silicon Drift Detector from Oxford
Instruments.
X-ray
photoelectron
spectroscopy
(XPS)
measurements were recorded using
a
Thermo K-Alpha
Spectrometer equipped with Al Kα source gun. Samples were
mounted on double-sided adhesive tape, and the spectra were
collected using an X-ray spot size of 400 μm and a pass energy
of 20 eV with 0.1 eV increments. The binding energies (BE)
were referenced to the C(1s) peak of adventitious carbon at
284.8 eV. Data analysis and peak fitting was performed using
Avantage software from Thermo Scientific. Thermogravimetric
analysis (TGA) was carried under flowing air (60 mL/min) using
TGA Q500 (TA Instruments). Samples were heated at a rate of
10°C/min to a final temperature of 550°C.The point of zero
charge for the as-synthesised Ti-NTs was determined by
measuring the zeta potential of Ti-NTs as a function of pH using
Brookhaven ZetaPALS Potential Analyzer. Ti-NTs were
dispersed in solutions of HNO3 and KOH at varying pH values
ranging from 2 to 11. FT-IR measurements were performed
using PerkinElmer Spectrum 100.
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
Acknowledgements
C. M. Olmos, L. E. Chinchilla, E. G. Rodrigues, J. J. Delgado, A. B.
Hungría, G. Blanco, M. F. R. Pereira, J. J. M. Órfão, J. J. Calvino,
X. Chen, Applied Catalysis B: Environmental 2016, 197, 222-235.
aA. M. Venezia, L. F. Liotta, G. Pantaleo, V. La Parola, G.
Deganello, A. Beck, Z. Koppány, K. Frey, D. Horváth, L. Guczi,
Applied Catalysis A: General 2003, 251, 359-368; bP. A. P.
Nascente, S. G. C. de Castro, R. Landers, G. G. Kleiman, Physical
Review B 1991, 43, 4659-4666.
Motaz Khawaji gratefully acknowledges the financial support of
Saudi Aramco. This work was funded in part by EPSRC
(EP/K014749/1). We are grateful to Dr. Ecaterina Ware for her
assistance with TEM.
[34]
[35]
C. M. Olmos, L. E. Chinchilla, J. J. Delgado, A. B. Hungría, G.
Blanco, J. J. Calvino, X. Chen, Catalysis Letters 2016, 146, 144-
156.
Keywords: Gold-palladium • titanate nanotubes • selective
oxidation • sol-immobilisation • benzyl alcohol
S. Meenakshisundaram, E. Nowicka, P. J. Miedziak, G. L. Brett, R.
L. Jenkins, N. Dimitratos, S. H. Taylor, D. W. Knight, D. Bethell, G.
J. Hutchings, Faraday Discussions 2010, 145, 341-356.
C. H. Bartholomew, R. J. Farrauto, Fundamentals of Industrial
Catalytic Processes, John Wiley & Sons, 2011.
aE. Cao, M. Sankar, S. Firth, K. F. Lam, D. Bethell, D. K. Knight,
G. J. Hutchings, P. F. McMillan, A. Gavriilidis, Chemical
Engineering Journal 2011, 167, 734-743; bS. S. Hladyi, M. K.
Starchevsky, Y. A. Pazdersky, M. N. Vargaftik, I. I. Moiseev,
Mendeleev Communications 2002, 12, 45-46.
aG. Kovtun, T. Kameneva, S. Hladyi, M. Starchevsky, Y.
Pazdersky, I. Stolarov, M. Vargaftik, I. Moiseev, Advanced
Synthesis & Catalysis 2002, 344, 957-964; bE. H. Cao, M. Sankar,
E. Nowicka, Q. He, M. Morad, P. J. Miedziak, S. H. Taylor, D. W.
Knight, D. Bethell, C. J. Kiely, A. Gavriilidis, G. J. Hutchings,
Catalysis Today 2013, 203, 146-152.
D. M. Meier, A. Urakawa, A. Baiker, The Journal of Physical
Chemistry C 2009, 113, 21849-21855.
W. Wang, J. Zhang, H. Huang, Z. Wu, Z. Zhang, Applied Surface
Science 2007, 253, 5393-5399.
E. Nowicka, J. P. Hofmann, S. F. Parker, M. Sankar, G. M. Lari, S.
A. Kondrat, D. W. Knight, D. Bethell, B. M. Weckhuysen, G. J.
Hutchings, Physical Chemistry Chemical Physics 2013, 15, 12147-
12155.
[1]
M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chemistry Letters
1987, 16, 405-408.
[36]
[37]
[2]
[3]
G. J. Hutchings, Journal of Catalysis 1985, 96, 292-295.
T. Hayashi, K. Tanaka, M. Haruta, Journal of Catalysis 1998, 178,
566-575.
[4]
[5]
L. Prati, M. Rossi, Journal of Catalysis 1998, 176, 552-560.
R. Zhao, D. Ji, G. Lv, G. Qian, L. Yan, X. Wang, J. Suo, Chem
Commun (Camb) 2004, 904-905.
[38]
[6]
[7]
[8]
P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, G. J.
Hutchings, Chemical Communications 2002, 2058-2059.
A. Villa, D. Wang, D. S. Su, L. Prati, Catal. Sci. Technol. 2015, 5,
55-68.
D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F.
Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G.
J. Hutchings, Science 2006, 311, 362-365.
[39]
[40]
[41]
[9]
J. H. Carter, S. Althahban, E. Nowicka, S. J. Freakley, D. J.
Morgan, P. M. Shah, S. Golunski, C. J. Kiely, G. J. Hutchings, ACS
Catalysis 2016, 6, 6623-6633.
[10]
[11]
D. I. Enache, D. Barker, J. K. Edwards, S. H. Taylor, D. W. Knight,
A. F. Carley, G. J. Hutchings, Catalysis Today 2007, 122, 407-411.
R. Mueller, H. K. Kammler, K. Wegner, S. E. Pratsinis Langmuir
2003, 19, 160-165.
This article is protected by copyright. All rights reserved.