Organometallics
Article
suggests that 10-MECP occurs before A11-ts. Moreover, the
relative energy of 10-MECP is determined to be 14.4 kcal/mol
lower than that of A11-ts. Finally, the oxidation product 2a and
intermediate A15 were generated through C−C bond cleavage
transition state A13-ts from A12; the activation barrier is
the National Synchrotron Radiation Research Center. The Program
of Introducing Talents of Discipline to Universities of China
(111 Program) is also appreciated.
REFERENCES
■
1
5
3.8 kcal/mol, and the overall decrease of free energy is
(
1) (a) Jia, F.; Li, Z. Org. Chem. Front. 2014, 1, 194−214. (b) Sun, C. L.;
3.2 kcal/mol. Herein, these calculation results concluded that
Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293−1314. (c) Liu, W.; Li, Y.;
Liu, K.; Li, Z. J. Am. Chem. Soc. 2011, 133, 10756−10759. (d) Sabbasani,
V. R.; Lee, H.; Xia, Y.; Lee, D. Angew. Chem., Int. Ed. 2016, 55, 1151−
IV
the [Fe O] species is active and could efficiently promote the
oxidation of 1a.
Additionally, benzophenone (2a) and benzaldehyde (2l) are
detected as the oxidation products when ethene-1,1,2-
triyltribenzene is employed as the substrate (eq 2). This result
1
155. (e) Wu, L.-J.; Tan, F.-L.; Li, M.; Song, R.-J.; Li, J.-H. Org. Chem.
Front. 2017, 4, 350−353. (f) Gao, L.; Xiong, S.; Wan, C.; Wang, Z.
Synlett 2013, 24, 1322−1339. (g) Li, Y.; Jia, F.; Ma, L.; Li, Z. Huaxue
Xuebao 2015, 73, 1311−1314. (h) Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.;
Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H. Angew. Chem., Int.
Ed. 2013, 52, 3638−3641. (i) Zhao, M.-N.; Yu, L.; Hui, R.-R.; Ren, Z.-
H.; Wang, Y.-Y.; Guan, Z.-H. ACS Catal. 2016, 6, 3473−3477.
(2) (a) Mbofana, C. T.; Chong, E.; Lawniczak, J.; Sanford, M. S. Org.
Lett. 2016, 18, 4258−4261. (b) Barton, D. H. R. In Chemical Synthesis:
Gnosis to Prognosis; Chatgilialoglu, C., Snieckus, V., Eds.; Springer
Netherlands: Dordrecht, The Netherlands, 1996; pp 589−599.
further proves the possibility of the above oxidation mechanism,
which involves a C−C bond cleavage process to lead to the
formation of two CO bonds.
(3) Li, C.-J. Acc. Chem. Res. 2009, 42, 335−344.
(4) (a) Wang, J.; Liu, C.; Yuan, J.; Lei, A. Chem. Commun. 2014, 50,
4
2
736−4739. (b) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761−
776. (c) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A.
CONCLUSION
■
Chem. Rev. 2015, 115, 12138−12204.
5) (a) Barton, D. H. R.; Le Gloahec, V. N.; Patin, H. New J. Chem.
998, 22, 565−568. (b) Lv, L.; Li, Z. Top. Curr. Chem. 2016, 374, 38.
IV
In summary, a mechanism involving a quintet ferryl [Fe O]
(
1
species has been proposed and disclosed for the oxidation of
alkenes with a ligand-free FeCl −TBHP system. DFT calculation
(6) Groves, J. T. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3569−3574.
(7) Kang, C.; Redman, C.; Cepak, V.; Sawyer, D. T. Bioorg. Med. Chem.
1993, 1, 125−140.
2
IV
results suggested that the [Fe O] species A6 is produced by
the reaction of FeCl with TBHP via a single electron transfer
2
(
8) (a) Sawyer, D. T.; Sobkowiak, A.; Matsushita, T. Acc. Chem. Res.
996, 29, 409−416. (b) MacFaul, P. A.; Wayner, D. D. M.; Ingold, K. U.
Acc. Chem. Res. 1998, 31, 159−162. (c) Gozzo, F. J. Mol. Catal. A: Chem.
001, 171, 1−22. (d) Perkins, M. J. Chem. Soc. Rev. 1996, 25, 229−236.
9) (a) Kim, J.; Larka, E.; Wilkinson, E. C.; Que, L. Angew. Chem., Int.
(
SET) process and a hydrogen transfer (HT) process; the overall
1
activation barrier is 25.0 kcal/mol. The Mulliken atomic spin
IV
density distribution on [Fe O] showed that the O site has
2
(
strong radical character and could easily react with alkene to form
the carbon radical intermediate A7. The radical A7 could be
further oxidized by TBHP to lead to the CC bond cleavage of
alkene that is exergonic by 84.3 kcal/mol in all.
Ed. Engl. 1995, 34, 2048−2051. (b) Costas, M.; Chen, K.; Que, L. Coord.
Chem. Rev. 2000, 200-202, 517−544. (c) McDonald, A. R.; Que, L.
Coord. Chem. Rev. 2013, 257, 414−428. (d) Hong, S.; Lee, Y.-M.; Cho,
K.-B.; Seo, M. S.; Song, D.; Yoon, J.; Garcia-Serres, R.; Clemancey, M.;
Ogura, T.; Shin, W.; Latour, J.-M.; Nam, W. Chem. Sci. 2014, 5, 156−
162. (e) Lenze, M.; Bauer, E. B. J. Mol. Catal. A: Chem. 2009, 309, 117−
123. (f) Bae, J. M.; Lee, M. M.; Lee, S. A.; Lee, S. Y.; Bok, K. H.; Kim, J.;
Kim, C. Inorg. Chim. Acta 2016, 451, 8−15.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
10) Ratnikov, M. O.; Doyle, M. P. J. Am. Chem. Soc. 2013, 135, 1549−
557.
11) (a) Jung, C.; Schunemann, V.; Lendzian, F. Biochem. Biophys. Res.
1
(
(
Cartesian coordinates for the calculated structures (XYZ)
Commun. 2005, 338, 355−364. (b) Decker, A.; Clay, M. D.; Solomon, E.
I. J. Inorg. Biochem. 2006, 100, 697−706. (c) Krebs, C.; Fujimori, D. G.;
Walsh, C. T.; Bollinger, J. M., Jr. Acc. Chem. Res. 2007, 40, 484−492.
AUTHOR INFORMATION
■
(
1
d) Nam, W.; Lee, Y.-M.; Fukuzumi, S. Acc. Chem. Res. 2014, 47, 1146−
154. (e) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.;
Bukowski, M. R.; Stubna, A.; Munck, E.; Nam, W.; Que, L. Science 2003,
99, 1037−1039.
12) (a) Stavropoulos, P.; C
*
̈
ORCID
2
Notes
The authors declare no competing financial interest.
(
̧elenligil-Çetin, R.; Tapper, A. E. Acc. Chem.
Res. 2001, 34, 745−752. (b) Groves, J. T.; Van der Puy, M. J. Am. Chem.
Soc. 1976, 98, 5290−5297. (c) Groves, J. T. J. Inorg. Biochem. 2006, 100,
4
34−447. (d) Kremer, M. L. Phys. Chem. Chem. Phys. 1999, 1, 3595−
ACKNOWLEDGMENTS
3605. (e) Bach, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2006, 128,
474−1488.
13) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter
Mater. Phys. 1988, 37, 785−789. (b) Becke, A. D. J. Chem. Phys. 1993,
8, 5648−5652.
14) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
009, 113, 6378−6396.
■
1
(
This paper is dedicated to Professor Xiyan Lu on the occasion of
his 90th birthday. This work was supported by the National
Natural Science Foundation of China (21390402, 21520102003,
9
(
2
2
1702150), the 973 Program (2012CB725302), the CAS
Interdisciplinary Innovation Team and the Hubei Province
Natural Science Foundation of China (2017CFA010), and the
China Postdoctoral Science Foundation (BX201600114,
(
15) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−241.
(16) (a) Lin, R.; Chen, F.; Jiao, N. Org. Lett. 2012, 14, 4158−4161.
(b) Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692−11695.
2016M602340). XAFS data were collected at beamline 17C1 of
E
Organometallics XXXX, XXX, XXX−XXX