Paper
Catalysis Science & Technology
catalytic activity and applications to some other oxidation re-
actions. This synthesis strategy can contribute toward fabri-
cating Z-scheme catalysts yielding both high oxidation and
excellent reduction ability.
20 J. Chen, J. Cen, X. L. Xu and X. N. Li, Catal. Sci. Technol.,
2016, 6, 349–362.
21 H. J. Chen, C. Liu, M. Wang, C. F. Zhang, N. C. Luo, Y. H. Wang,
H. Abroshan, G. Li and F. Wang, ACS Catal., 2017, 7, 3632–3638.
2
2
2
2
2 X. J. Lang, W. H. Ma, Y. B. Zhao, C. C. Chen, H. W. Ji and
J. C. Zhao, Chem. – Eur. J., 2012, 18, 2624–2631.
3 S. Furukawa, Y. Ohno, T. Shishido, K. Teramura and T.
Tanaka, ACS Catal., 2011, 1, 1150–1153.
4 A. Rangaswamy, P. Sudarsanam, B. G. Rao and B. M. Reddy,
Res. Chem. Intermed., 2016, 42, 4937–4950.
5 X. T. Wang, C. H. Liow, D. P. Qi, B. W. Zhu, W. R. Leow, H.
Wang, C. Xue, X. D. Chen and S. Z. Li, Adv. Mater., 2014, 26,
Conflicts of interest
The authors declare no competing financial interest.
Acknowledgements
We thank the financial support from the National Natural Sci-
ence Foundation of China (51772079, 51672073 21771061),
Natural Science Foundation of Heilongjiang Province of
China (B2017009).
3
506–3512.
2
6 D. Friedmann, A. Hakki, H. Kim, W. Choic and D.
Bahnemann, Green Chem., 2016, 18, 5391–5411.
2
7 G. Liu, L. Z. Wang, H. G. Yang, H.-M. Cheng and G. Q. Lu,
J. Mater. Chem., 2010, 20, 831–843.
References
1
2
3
4
5
6
7
8
9
J. C. Colmenares and R. Luque, Chem. Soc. Rev., 2014, 43,
65–778.
S. Peiris, J. McMurtrie and H.-Y. Zhu, Catal. Sci. Technol.,
016, 6, 320–338.
D. S. Ovoshchnikov, B. G. Donoeva and V. B. Golovko, ACS
Catal., 2015, 5, 34–38.
J. D. Tibbetts, D. R. Carbery and E. A. C. Emanuelsson, ACS
Sustainable Chem. Eng., 2017, 5, 9826–9835.
D. R. Sun, L. Ye and Z. H. Li, Appl. Catal., B, 2015, 164,
28 S. M. Fang, Y. J. Xin, G. Lei, C. C. Han, P. Qiu and L. E. Wu,
Appl. Catal., B, 2015, 179, 458–467.
29 D. Sharma, V. R. Satsangi, R. Shrivastav, U. V. Waghmare
and S. Dass, Int. J. Hydrogen Energy, 2016, 41, 18339–18350.
30 S. C. Hu, F. Zhou, L. Z. Wang and J. L. Zhang, Catal.
Commun., 2011, 12, 794–797.
31 M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai and Y. H.
Wu, J. Phys. Chem. B, 2006, 110, 20211–20216.
32 J.-C. Wang, L. Zhang, W.-X. Fang, J. Ren, Y.-Y. Li, H.-C. Yao,
J.-S. Wang and Z.-J. Li, ACS Appl. Mater. Interfaces, 2015, 7,
8631–8639.
33 H. J. Li, Y. Y. Gao, Y. Zhou, F. T. Fan, Q. T. Han, Q. F. Xu,
X. Y. Wang, M. Xiao, C. Li and Z. G. Zou, Nano Lett.,
2016, 16, 5547–5552.
34 H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, Nat.
Mater., 2006, 5, 782–786.
35 F. Chen, Q. Yang, S. N. Wang, F. B. Yao, J. Sun, Y. L. Wang,
C. Zhang, X. M. Li, C. G. Niu, D. B. Wang and G. M. Zeng,
Appl. Catal., B, 2017, 209, 493–505.
36 F. Chen, Q. Yang, X. M. Li, G. M. Zeng, D. B. Wang, C. G.
Niu, J. W. Zhao, H. X. An, T. Xie and Y. C. Deng, Appl.
Catal., B, 2017, 200, 330–342.
7
2
4
28–432.
X. J. Lang, X. D. Chen and J. C. Zhao, Chem. Soc. Rev.,
014, 43, 473–486.
2
Z.-Y. Zhai, X.-N. Guo, G.-Q. Jin and X.-Y. Guo, Catal. Sci.
Technol., 2015, 5, 4202–4207.
D. S. Ovoshchnikov, B. G. Donoeva and V. B. Golovko, ACS
Catal., 2015, 5, 34–38.
S. Zhang, C. R. Chang, Z. Q. Huang, Y. Y. Ma, W. Gao, J. Li
and Y. Q. Qu, ACS Catal., 2015, 5, 6481–6488.
1
1
0 Y. Liu, P. Zhang, B. Z. Tian and J. L. Zhang, ACS Appl. Mater.
Interfaces, 2015, 7, 13849–13858.
1 P. Sudarsanam, B. Mallesham, A. Rangaswamy, B. G. Rao,
S. K. Bhargava and B. M. Reddy, J. Mol. Catal., 2016, 412,
4
7–55.
37 F. Chen, Q. Yang, Y. L. Wang, F. B. Yao, Y. H. Ma, X. D.
Huang, X. M. Li, D. B. Wang, G. M. Zeng and H. Q. Yu,
Chem. Eng. J., 2018, 348, 157–170.
1
1
1
1
1
1
1
1
2 F. Raza, J. H. Park, H.-R. Lee, H.-I. Kim, S.-J. Jeon and J.-H.
Kim, ACS Catal., 2016, 6, 2754–2759.
3 B. Chen, L. Y. Wang and S. Gao, ACS Catal., 2015, 5,
38 N. Zhang, X. Z. Fu and Y.-J. Xu, J. Mater. Chem., 2011, 21,
8152–8158.
39 N. Zhang, S. Q. Liu and Y.-J. Xu, Nanoscale, 2012, 4,
2227–2238.
40 M. Basu, A. K. Sinha, M. Pradhan, S. Sarkar and G. T. Pal,
J. Phys. Chem. C, 2011, 115, 12275–12282.
41 H. Z. Bao, Z. H. Zhang, Q. Hua and W. X. Huang, Langmuir,
2014, 30, 6427–6436.
42 W. Chen, Z. L. Fan and Z. P. Lai, J. Mater. Chem. A, 2013, 1,
13862–13868.
43 Y. J. Lee, G. H. He, A. J. Akey and R. Si, J. Am. Chem. Soc.,
2011, 133, 12952–12955.
44 Y. T. Xiao, Y. J. Chen, Y. Xie, G. H. Tian, S. E. Guo, T. R. Han
and H. G. Fu, Chem. Commun., 2016, 52, 2521–2524.
5
851–5876.
4 S.-I. Murahashi, Angew. Chem., Int. Ed. Engl., 1995, 34,
443–2465.
2
5 X. J. Yang, B. Chen, X. B. Li, L. Q. Zheng, L. Z. Wu and C. H.
Tung, Chem. Commun., 2014, 50, 6664–6667.
6 S.-I. Naya, T. Niwa, T. Kume and H. Tada, Angew. Chem., Int.
Ed., 2014, 53, 7305–7309.
7 N. Li, X. J. Lang, W. H. Ma, H. W. Ji, C. C. Chen and J. C.
Zhao, Chem. Commun., 2013, 49, 5034–5036.
8 B. Yuan, R. F. Chong, B. Zhang, J. Li, Y. Liu and C. Li, Chem.
Commun., 2014, 50, 15593–15596.
9 X. Li, J. G. Yu and M. Jaroniec, Chem. Soc. Rev., 2016, 45,
2
603–2636.
5542 | Catal. Sci. Technol., 2018, 8, 5535–5543
This journal is © The Royal Society of Chemistry 2018