pubs.acs.org/joc
readily form stable anions2 and can act as good leaving
Conversion of Oximes to Carbonyl Compounds with
2-Nitro-4,5-dichloropyridazin-3(2H )-one
groups,1 we explored the application of 2-substitued pyrida-
zin-3(2H )-ones as electrophilic transfer reagents. In our
previous paper,1d we reported the 2-nitro-4,5-dichloropyr-
idazin-3(2H )-one (2) as a nitro group source. According
to the literature,3 Amberlyst 15 supported nitrosonium ion
converts oximes to carbonyl compounds. Therefore, com-
pound 2 may play the role of activating agent in the conver-
sion of oximes into their corresponding carbonyl com-
pounds. Recently, we found the conversion of acetophenone
oxime to the corresponding carbonyl compound by 2-nitro-
4,5-dichloropyridazin-3(2H )-one (2) under neutral condi-
tion in refluxing organic solvents in low yield.
Bo Ram Kim, Hyung-Geun Lee, Eun Jung Kim,
Sang-Gyeong Lee,* and Yong-Jin Yoon*
Department of Chemistry & Environmental Biotechnology
National Core Research Center, Research Institute of Natural
Sciences, Graduate School for Molecular Materials and
Nanochemistry, Gyeongsang National University,
Jinju 660-701, Korea
Oximes are extensively used for group protecting, purifi-
cation, and characterization of carbonyl compounds.4,5
Thus, there has been increasing interest in the development
of methods for the conversion of oximes into their corre-
sponding carbonyl compounds, and a number of methods
have been explored.6
Received November 3, 2009
However, these methods suffer from one or more draw-
backs such as the use of toxic reagents, strong oxidation
agents, additives and expensive metals, further oxidation in
the case of aldoximes, and difficulty in product isolation.
As a continued interest in developing an efficient, mild,
and greener process, we expected to apply 2-nitro-4,5-di-
chloropyridazin-3(2H )-one (2) as the activating agent. As
expected, oximes were treated with agent 2 under neutral
condition to give their corresponding carbonyl compounds
(Scheme 1).
Conversion of oximes to the carbonyl compounds has been
demonstrated with use of 2-nitro-4,5-dichloropyridazin-
3(2H )-one (2) under microwave irradiated conditions.
Fourteen aliphatic and aromatic oximes converted to their
corresponding aldehydes and ketones in good to excellent
yields. It is noteworthy that the reaction is conducted under
neutral, mild, and eco-friendly condition.
In this paper, we wish to report a new, simple, and
green method for the effective deprotection of oximes under
neutral and microwave irradiation.
(3) Lakouraj, M. M.; Noorian, M.; Mokhtary, M. React. Funct. Polym.
2006, 66, 910.
(4) Yang, Y.; Zhang, D.; Wu, L.-Z.; Chen, B.; Zhang, L.-P.; Tung, C. H.
J. Org. Chem. 2004, 69, 4788 and references cited therein.
(5) Kim, Y. H.; Jung, J. C.; Kim, K. S. Chem. Ind. 1992, 31.
2-Substitued pyridazin-3(2H )-ones as electrophilic agents
are stable and easily prepared compounds whose utility
as synthetic auxiliaries was recently demonstrated by
Yoon et al.1 The ease with which pyridazin-3(2H )-ones
can be removed and/or recycled spurred our interest in their
use for other transformations. Since pyridazin-3(2H )-ones
(6) For selected recent examples, see: (a) Karami, B.; Montazerozohori,
M. Molecules 2006, 11, 720. (b) Mitra, A. K.; De, P.; Karchaudhuri, N. J.
Chem. Res. (S) 1999, 320. (c) Pourali, A. R.; Goli, A. Bull. Korean Chem. Soc.
2006, 27, 587. (d) Yang, Y.; Zhang, D.; Wu, L.-Z.; Chen, B.; Zhang, L. P.;
Tung, J.-H. J. Org. Chem. 2004, 69, 4788. (e) Varma, R. S.; Meshram, H. M.
Tetraheadron Lett. 1997, 38, 5427. (f) de Lijser, H. J. P.; Fardoun, F. H.;
Sawyer, J. R.; Quant, M. Org. Lett. 2002, 4, 2325. (g) Gogoi, P.; Hazarika, P.;
Konwar, D. J. Org. Chem. 2005, 70, 1934. (h) Salehi, P.; Khodaei, M. M.;
Goodarzi, M. Synth. Commun. 2002, 32 (8), 1259. (i) Shirini, F.; Mamaghai,
M.; Rahmanzadeh, A. ARKIVOC 2008, 1, 34. (j) Chavan, S. P.; Soni, P.
Tetrahedron Lett. 2004, 45, 3161. (k) Gupta, P. K.; Manral, L.; Ganesan, K.
Synthesis 2007, 13, 1930. (l) Bendale, P. M.; Khadilkar, B. M. Tetrahedron
Lett. 1998, 39, 5867. (m) Bhar, S.; Guha, S. Synth. Commun. 2005, 35, 1183.
(n) Khurana, J. M.; Ray, A.; Sahoo, P. K. Bull. Chem. Soc. Jpn. 1994, 67,
1091. (o) Carmeli, M.; Rozen, S. Tetrahedron Lett. 2006, 47, 763. (p) Varma,
R. S.; Dahiya, R.; Saini, R. K. Tetraheadron Lett. 1997, 38, 8819. (q)
Shaabanni, A.; Rahmati, A.; Naderi, S. Synth. Commun. 2007, 37, 4035.
(r) Boruah, A.; Baruah, B.; Prajapati, D.; Sandhu, J. S. Tetrahedron Lett.
1997, 38, 4267. (s) Chaudhari, S. S.; Akamanchi, K. G. Tetrahedron. Lett.
1998, 39, 3209. (t) Barhate, N. B.; Gajare, A. S.; Wakharkar, R. D.; Sudalai,
A. Tetrahedron Lett. 1997, 38, 653. (u) Bose, D. S.; Srinivas, P. Synth.
Commun. 1997, 27, 3835. (v) Varma, R. S.; Dahiya, R.; Saini, R. K.
Tetrahedron Lett. 1997, 38, 8819. (w) Curran, D. P.; Brill, J. F.; Rakiewicz,
D. M. J. Org. Chem. 1984, 49, 1654. (x) Donaldson, R. E.; Saddler, J. C.;
Boyrn, S.; Mckenzie, A. T.; Fuchs, P. L. J. Org. Chem. 1983, 48, 2167. (y)
Corey, E. J.; Hopkins, P. B.; Kim, S.; Kou, S.; Nambiar, K. P.; Flack, J. R.
J. Am. Chem. Soc. 1979, 101, 7131.
(1) For selected recent examples, see: (a) Kim, M. J.; Kim, J. J.; Won, J.
E.; Kang, S. B.; Park, S. E.; Jung, K. J.; Lee, S. G.; Yoon, Y. J. Bull. Korean
Chem. Soc. 2008, 29, 2247. (b) Kang, S. B.; Yim, H. S.; Won, J. E.; Kim, M. J.;
Kim, J. J.; Kim, H. K.; Lee, S. G.; Yoon, Y. J. Bull. Korean Chem. Soc. 2008,
29, 1025. (c) Won, J. E.; Kim, H. K.; Kim, J. J.; Yim, H. S.; Kim, M. J.; Kang,
S. B.; Chung, H. A.; Lee, S. G.; Yoon, Y. J. Tetrahedron 2007, 63, 12720. (d)
Park, Y. D.; Kim, H. K.; Kim, J. J.; Cho, S. D.; Kim, S. K.; Shiro, M.; Yoon,
Y. J. J. Org. Chem. 2003, 68, 9113. (e) Park, Y. D.; Kim, J. J.; Cho, S. D.; Lee,
S. G.; Falck, J. R.; Yoon, Y. J. Synthesis 2005, 1136. (f) Kim, J. J.; Kweon, D.
H.; Cho, S. D.; Kim, H. K.; Jung, E. Y.; Lee, S. G.; Falck, J. R.; Yoon, Y. J.
Tetrahedron 2005, 61, 5889. (g) Kim, S. K.; Kweon, D. H.; Cho, S. D.; Kang,
Y. J.; Park, K. H.; Lee, S. G.; Yoon, Y. J. J. Heterocycl. Chem. 2005, 42, 353.
(h) Kim, J. J.; Park, Y. D.; Kim, H. K.; Cho, S. D.; Kim, J. K.; Lee, S. G.;
Yoon, Y. J. Synth. Commun. 2005, 35, 731. (i) Park, Y. D.; Kim, J. J.; Kim, H.
K.; Cho, S. D.; Kang, Y. J.; Park, K. H.; Lee, S. G.; Yoon, Y. J. Synth.
Commun. 2005, 35, 371. (j) Lee, S. G.; Kim, J. J.; Kim, H. K.; Kweon, D. H.;
Kang, Y. J.; Cho, S. D.; Kim, S. K.; Yoon, Y. J. Curr. Org. Chem. 2004, 8,
1463.
(2) Kim, S. K.; Cho, S. D.; Kweon, D. H.; Yoon, Y. J.; Kim, J. H.; Heo,
J. N. J. Heterocyl. Chem. 1997, 34, 209.
(7) Jeong, T.-S.; Kim, M. J.; Yu, H.; Kim, K. S.; Choi, J.-K.; Kim, S.-S.;
Lee., W. S. Bioorg. Med. Chem. Lett. 2005, 15 (5), 1525.
484 J. Org. Chem. 2010, 75, 484–486
Published on Web 12/07/2009
DOI: 10.1021/jo902356e
r
2009 American Chemical Society