Article
Inorganic Chemistry, Vol. 49, No. 6, 2010 2921
(PW4) and [PW12O40]3- (PW12) polyoxometalates (POMs)
were developed independently by the Venturello22-23 and
Ishii24-26 groups. The major drawback of the Venturello-
Ishii epoxidation systems is the use of toxic chlorocarbons
as solvents to obtain high reaction rates and yields of
epoxides. An improved ternary catalytic system for the
selective epoxidation of simple alkenes has been suggested
by Noyori and co-workers.27,28 This entirely free of or-
ganic solvents and halides system consists of Na2WO4,
(aminomethyl)phosphonic acid and QþHSO4-. The use of
lipophilic quaternary ammonium hydrogen sulfate significantly
enhances the yield of epoxide. However, this catalytic system
can not be employed for the production of acid sensitive
epoxides because epoxide ring-opening occurs under acidic
conditions. Furthermore, both the Venturello-Ishii and
Noyori systems have drawbacks typical of homogeneous cat-
alysts, such as complexity of the catalyst separation from the
reaction mixtures and contamination of products with traces of
transition metals (even if two-phase conditions are employed).
Immobilization of active homogeneous catalysts on solid
supports has attracted a lot of research interest because solid
catalysts have the advantages ofbeing easier to recoverand to
recycle. Many research papers were dedicated to immobiliza-
tion of the 12-tungstophosphoric acid, H3PW12O40, on
different solid supports, such as amorphous silica,29-41
mesostructured silicates,31,42-47 layered double hydroxides
(LDH),48,49 active carbon,50 metal oxides,29,51-54 and poly-
mers.55,56 Silica has been widely used as supporting material
for PW12 since it interacts weakly with the PW12 anion,
thereby preserving its structure in the supported form. How-
ever, PW12 immobilized by weak interaction is easily leached
out of the support in polar reaction media.39-41 On the
contrary, strong interaction, for example, with alumina, may
result in PW12 destruction in the course of immobilization.54
Supported PW12 catalysts were mainly examined as acid
catalysts,44,45,47,53 but a few examples of using immobilized
PW12 in alkene epoxidation with H2O2 were also reported.
Thus, LDH intercalated PW12 was found to be almost
inactive in cyclohexene epoxidation with 10% H2O2.49 On
the other hand, the catalyst prepared by supporting PW12 on
mesoporous silica preliminary modified with Ph3SiOEt and
Me3NCH(OCH2Ph)2 groups produced epoxides from differ-
ent alkenes with the yields up to 97% using aqueous 15%
H2O2 without an organic solvent.33 However, no data on the
catalysts stability, recyclability, metal leaching, and the
nature of catalysis were reported for this system.
Different low nuclearity oxo- and peroxotungstic species,
such as WO4 , , , ,
- 57 WO53- 58-61 W7O246- 62 [W2O3(O2)4]2- 63
and [(HPO4){WO(O2)2}2]2- (PW2),64-66 were immobilized
on solid supports by anion exchange with LDH57,62 or
Amberlyst A26,65 adsorption onto silica supports64-66 and
binding with organophosphorous groups on the surface of
functionalized silica,58,63 resin,59 hydroxyapatite59 or porous
polymers.61 A mixed-valence oxotungsten-silica mesoporous
W-SBA-15 material prepared by the sol-gel technique
using tetraethyl orthosilicate and Na2WO4 was reported as
well.64,67 The supported materials catalyzed selective oxida-
tion of olefins,57-60,62,64,65 allylic alchohols57 and sulfides63
(22) Venturello, C.; D’Aloisio, R.; Bart, J. C. J.; Ricci, M. J. Mol. Catal.
1985, 32, 107–110.
(23) Venturello, C.; D’Aloisio, R. J. Org. Chem. 1988, 53, 1553–1557.
(24) Matoba, Y.; Inoue, H.; Akagi, J.; Okabayashi, T.; Ishii, Y.; Ogawa,
M. Synth. Commun. 1984, 14, 865–873.
(25) Ishii, Y.; Yamawaki, K.; Yoshida, T.; Ura, T.; Ogawa, M. J. Org.
Chem. 1987, 52, 1868–1870.
(26) Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.; Yoshida, T.; Ogawa,
M. J. Org. Chem. 1988, 53, 3587–3593.
64,65
with aqueous H2O2. Silica-supported WO53-58 and PW2
(27) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori, R. J. Org.
Chem. 1996, 61, 8310–8311.
(28) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Panyella, D.;
Noyori, R. Bull. Chem. Soc. Jpn. 1997, 70, 905–915.
(29) Mohana Rao, K.; Gobetto, R.; Iannibello, A.; Zecchina, A. J. Catal.
1989, 119, 512–516.
(49) Gardner, E.; Pinnavaia, T. J. Appl. Catal., A 1998, 167, 65–74.
(50) Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J.; van Bekkum, H.
Catal. Lett. 1994, 27, 187–197.
ꢀ
(51) Gomez-Garcıa, M. A.; Pitchon, V.; Kiennemann, A. Appl. Catal., B
´
(30) Mastikhin, V. M.; Kulikov, S. M.; Nosov, A. V.; Kozhevnikov, I. V.;
Mudrakovsky, I. L.; Timofeeva, M. N. J. Mol. Catal. 1990, 60, 65–70.
(31) Kozhevnikov, I. V.; Kloestra, K. R.; Sinnema, A.; Zandbergen, H.
W.; van Bekkum, H. J. Mol. Catal. A: Chem. 1996, 114, 287–298.
(32) Lefebvre, F. J. Chem. Soc., Chem. Commun. 1992, 756–757.
(33) Sakamoto, T.; Pac, C. Tetrahedron Lett. 2000, 41, 10009–10012.
2007, 70, 151–159.
(52) Qu, X.; Guo, Y.; Hu, C. J. Mol. Catal. A: Chem. 2007, 262, 128–135.
(53) Rajkumar, T.; Ranga Rao, G. J. Mol. Catal. A: Chem. 2008, 295, 1–9.
(54) Hodjati, S.; Vaezzadeh, K.; Petit, C.; Pitchon, V.; Kiennemann, A.
Top. Catal. 2001, 16/17, 151–155.
(55) Hasik, M.; Turek, W.; Stochmal, E.; Lapkowski, M.; Pron, A. J.
Catal. 1994, 147, 544–551.
(56) Stochmal-Pomarzanska, E.; Hasik, M.; Turek, W.; Pron, A. J. Mol.
Catal. A: Chem. 1996, 114, 267–275.
(57) Sels, B. F.; De Vos, D. E.; Jacobs, P. A. Tetrahedron Lett. 1996, 37,
8557–8560.
(58) Gelbard, G.; Gauducheau, T.; Vidal, E.; Parvulescu, V. I.; Crosman,
A.; Pop, V. M. J. Mol. Catal A: Chem. 2002, 182-183, 257–266.
(59) Gelbard, G.; Breton, F.; Quenard, M.; Sherrington, D. C. J. Mol.
Catal. A: Chem. 2000, 153, 7–18.
ꢀ
(34) Mroviec-Biazon, J.; Turek, W.; Jarzebski, A. B. React. Kinet. Catal.
Lett. 2002, 76, 213–219.
(35) Kim, H.-J.; Shul, Y.-G.; Han, H. Appl. Catal., A 2006, 299, 46–51.
(36) Zhang, Q.; Tan, Y.; Yang, C.; Han, Y.; Shamoto, J.; Tsubaki, N. J.
Nat. Gas Chem. 2007, 16, 322–325.
(37) Izumi, Y.; Hisano, K.; Hida, T. Appl. Catal., A 1999, 181, 277–282.
(38) Izumi, Y.; Ono, M.; Kitagawa, M.; Yoshida, M.; Urabe, K. Micro-
porous Mesorporous Mater. 1995, 5, 255–262.
ꢀ
ꢀ
(39) Vazquez, P.; Pizzio, L.; Romanelli, G.; Autino, J.; Caceres, C.;
Blanco, M. Appl. Catal., A 2002, 235, 233–240.
(60) Crosman, A.; Gelbard, G.; Poncelet, G.; Parvulescu, V. I. Appl.
Catal., A 2004, 264, 23–32.
ꢀ
(40) Marme, F.; Coudurier, G.; Vedrine, J. C. Microporous Mesoporous
Mater. 1998, 22, 151–163.
(41) Haber, J.; Pamin, K.; Matachowski, L.; Mucha, D. Appl. Catal., A
2003, 256, 141–152.
(42) Li, W.; Li, L.; Wang, Z.; Cui, A.; Sun, C.; Zhao, J. Mater. Lett. 2001,
49, 228–234.
(43) Damyanova, S.; Dimitrov, L.; Mariscal, R.; Fierro, J. L. G.; Petrov,
L.; Sobrados, I. Appl. Catal., A 2003, 256, 183–197.
(44) He, N.-Y.; Woo, C.-S.; Kim, H.-G.; Lee, H.-I. Appl. Catal., A 2005,
281, 167–178.
(45) Sawant, D.; Vinu, A.; Lefebvre, F.; Halligudi, S. B. J. Mol. Catal. A:
Chem. 2007, 262, 98–108.
(46) Yang, L.; Li, J.; Yuan, X.; Shen, J.; Qi, Y. J. Mol. Catal. A: Chem.
2007, 262, 114–118.
(47) Herrera, J. E.; Kwak, J. H.; Hu, J. Z.; Wang, Y.; Peden, C. H. F. Top.
Catal. 2008, 49, 259–267.
(48) Kwon, T.; Pinnavaia, T. J. Chem. Mater. 1989, 1, 381–383.
(61) Gelbard, G. C. R. Acad. Sci. Chem. 2000, 3, 757–764.
(62) Palomeque, J.; Figueras, F.; Gelbard, G. Appl. Catal., A 2006, 300,
100–108.
(63) Xian-Ying, S.; Jun-Fa, W. J. Mol. Catal. A: Chem. 2008, 280, 142–147.
ꢀ
(64) Bregeault, J.-M.; Piquemal, J.-Y.; Briot, E.; Duprey, E.; Launay, F.;
Salles, L.; Vennat, M.; Legrand, A.-P. Microporous Mesoporous Mater.
2001, 44-45, 409–417.
ꢀ
(65) Bregeault, J.-M.; Thouvenot, R.; Zoughebi, S.; Salles, L.; Atlamsani,
A.; Duprey, E.; Aubry, C.; Robert, F.; Chottard, G. Stud. Surf. Sci. Catal.
1994, 82, 571–581.
(66) Duprey, E.; Maquet, J.; Man, P. P.; Manoli, J.-M.; Delamar, M.;
ꢀ
Bregeault, J.-M. Appl. Catal., A 1995, 128, 89–96.
(67) Cheng, C.-Y.; Lin, K.-J.; Prasad, M. R.; Fu, S.-J.; Chang, S.-Y.;
Shyu, S.-G.; Sheu, H.-S.; Chen, C.-H.; Chuang, C.-H.; Lin, M.-T. Catal.
Commun. 2007, 8, 1060–1064.