Inorganic Chemistry
Article
(3) Yum, J.-H.; Baranoff, E.; Wenger, S.; Nazeeruddin, M. K.; Gratzel,
M. Panchromatic engineering for dye-sensitized solar cells. Energy
Environ. Sci. 2011, 4, 842−857.
(19) Li, G.; Wu, S. J.; Wu, C. G. Structural design of ruthenium
sensitizer compatible with cobalt electrolyte for a dye-sensitized solar
cell. J. Mater. Chem. A 2014, 2, 17551−17560.
̈
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
(4) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J. G.; Ho, K. C. A
ruthenium complex with superhigh light-harvesting capacity for dye-
sensitized solar cells. Angew. Chem., Int. Ed. 2006, 45, 5822−5825.
(5) Hussain, M.; Islam, A.; Bedja, I.; Gupta, R. K.; Han, L.; El-Shafei,
A. A comparative study of Ru(II) cyclometallated complexes versus
thiocyanated heteroleptic complexes: thermodynamic force for
efficient dye regeneration in dye-sensitized solar cells and how low
could it be? Phys. Chem. Chem. Phys. 2014, 16, 14874−14881.
(6) Li, J. Y.; Lee, C.; Chen, C. Y.; Lee, W. L.; Ma, R.; Wu, C. G.
Diastereoisomers of ruthenium dyes with unsymmetric ligands for
DSC: Fundamental chemistry and photovoltaic performance. Inorg.
Chem. 2015, 54, 10483−10489.
(7) Yu, Q.; Liu, S.; Zhang, M.; Cai, N.; Wang, Y.; Wang, P. An
extremely high molar extinction coefficient ruthenium sensitizer in
dye-sensitized solar cells: The effects of π-conjugation extension. J.
Phys. Chem. C 2009, 113, 14559−14566.
(21) Becke, A. D. Density-functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(8) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.;
Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. Combined
̈
(22) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density.
Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785−789.
(23) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for
molecular calculations. Potentials for the transition metal atoms Sc to
Hg. J. Chem. Phys. 1985, 82, 270−283.
experimental and DFT-TDDFT computational study of photo-
electrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005,
127, 16835−16847.
(9) Privalov, T.; Boschloo, G.; Hagfeldt, A.; Svensson, P. H.; Kloo, L.
A study of the interactions between I¯/I3¯ redox mediators and
organometallic sensitizing dyes in solar cells. J. Phys. Chem. C 2009,
113, 783−790.
(10) Hoggard, P. E.; Porter, G. B. Photoanation of the tris(2,2′-
bipyridine)ruthenium(II) cation by thiocyanate. J. Am. Chem. Soc.
1978, 100, 1457−1463.
(11) Nguyen, H. T.; Ta, H. M.; Lund, T. Thermal thiocyanate ligand
substitution kinetics of the solar cell dye N719 by acetonitrile, 3-
methoxypropionitrile, and 4-tert-butylpyridine. Sol. Energy Mater. Sol.
Cells 2007, 91, 1934−1942.
(12) Abbotto, A.; Coluccini, C.; Dell’ Orto, E.; Manfredi, N.;
Trifiletti, V.; Salamone, M. M.; Ruffo, R.; Acciarri, M.; Colombo, A.;
Dragonetti, C.; Ordanini, S.; Roberto, D.; Valore, A. Thiocyanate-free
cyclometalated ruthenium sensitizers for solar cells based on
heteroaromatic-substituted 2-arylpyridines. Dalton Trans. 2012, 41,
11731−11738.
(24) McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets
for molecular calculations. I. Second row atoms, Z = 11−18. J. Chem.
Phys. 1980, 72, 5639−5648.
(25) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies,
structures, and electronic properties of molecules in solution with the
C-PCM solvation model. J. Comput. Chem. 2003, 24, 669−681.
(26) Cossi, M.; Barone, V. Time-dependent density functional theory
for molecules in liquid solutions. J. Chem. Phys. 2001, 115, 4708−4717.
(27) Barone, V.; Cossi, M. Quantum calculation of molecular
energies and energy gradients in solution by a conductor solvent
model. J. Phys. Chem. A 1998, 102, 1995−2001.
(28) Coluccini, C.; Manfredi, N.; Calderon, E. H.; Salamone, M. M.;
Ruffo, R.; Roberto, D.; Lobello, M. G.; De Angelis, F.; Abbotto, A.
Photophysical and electrochemical properties of thiophene-based 2-
arylpyridines. Eur. J. Org. Chem. 2011, 2011, 5587−5598.
(29) In fact, a racemate (meaning a mixture of two enantiomers; also
called a racemic mixture) also cannot be distinguished by NMR
spectroscopy. Typical laboratory purification methods (normal-phase,
reversed-phase, and size-exclusion chromatography, recrystallization,
distillation, extraction, etc.) cannot separate two enantiomers because
of their same chemical and physical properties. Importantly, in an
achiral environment such as a DSC cell, two enantiomers behave in the
same way. Therefore, we support that the isolation of each enantiomer
is really unnecessary in DSC.
(13) Bomben, P. G.; Gordon, T. J.; Schott, E.; Berlinguette, C. P. A
trisheteroleptic cyclometalated RuII sensitizer that enables high power
output in a dye-sensitized solar cell. Angew. Chem., Int. Ed. 2011, 50,
10682−10685.
(14) Bomben, P. G.; Koivisto, B. D.; Berlinguette, C. P.
Cyclometalated Ru complexes of type [RuII(N∧N)2(C∧N)]z:
Physicochemical response to substituents installed on the anionic
ligand. Inorg. Chem. 2010, 49, 4960−4971.
́
(15) Bomben, P. G.; Theriault, K. D.; Berlinguette, C. P. Strategies
for optimizing the performance of cyclometalated ruthenium
sensitizers for dye-sensitized solar cells. Eur. J. Inorg. Chem. 2011,
2011, 1806−1814.
(30) Hartley, F. R. The cis- and trans-effects of ligands. Chem. Soc.
Rev. 1973, 2, 163−179.
(31) DUY2 and its ester form show a small δ difference (Δδ = 0.1
ppm) of their two ortho protons, related to the ester-to-acid
conversion, while two ortho protons of DUY4 and its ester form are
almost the same (Δδ = 0.013 ppm). This indicates that the ester-to-
acid conversion of ligand Et2dcbpy has not influenced the magnetic
environment around the ortho protons of DUY4 and its ester form, or,
in other words, Et2dcbpy orients trans to the benzene ring and ligand
B20 trans to the pyridine ring of the cyclometalating ligand.
(32) Boschloo, G.; Gibson, E. A.; Hagfeldt, A. Photomodulated
voltammetry of iodide/triiodide redox electrolytes and its relevance to
dye-sensitized solar cells. J. Phys. Chem. Lett. 2011, 2, 3016−3020.
(33) Chen, C. Y.; Pootrakulchote, N.; Chen, M. Y.; Moehl, T.; Tsai,
(16) Bomben, P. G.; Borau-Garcia, J.; Berlinguette, C. P. Three is not
a crowd-efficient sensitization of TiO2 by a bulky trichromic
trisheteroleptic cycloruthenated dye. Chem. Commun. 2012, 48,
5599−5601.
(17) Polander, L. E.; Yella, A.; Curchod, B. F. E.; Astani, N. A.;
Teuscher, J.; Scopelliti, R.; Gao, P.; Mathew, S.; Moser, J.-E.;
Tavernelli, I.; Rothlisberger, U.; Gratzel, M.; Nazeeruddin, M. K.;
̈
Frey, J. Towards compatibility between ruthenium sensitizers and
cobalt electrolytes in dye-sensitized solar cells. Angew. Chem., Int. Ed.
2013, 52, 8731−8735.
(18) Funaki, T.; Otsuka, H.; Onozawa-Komatsuzaki, N.; Kasuga, K.;
Sayama, K.; Sugihara, H. Systematic evaluation of HOMO energy
levels for efficient dye regeneration in dye-sensitized solar cells. J.
Mater. Chem. A 2014, 2, 15945−15951.
H. H.; Zakeeruddin, S. M.; Wu, C. G.; Gratzel, M. A new heteroleptic
̈
ruthenium sensitizer for transparent dye-sensitized solar cells. Adv.
Energy Mater. 2012, 2, 1503−1509.
H
Inorg. Chem. XXXX, XXX, XXX−XXX