Lei Liang et al.
COMMUNICATIONS
ane monooxygenase (pMMO) have been extensively
studied, few of them have been employed as catalysts
in oxidations. The structural information we obtained
may provide a unique avenue toward further design
of polynuclear copper catalysts mimicking the active
metal sites of multicopper oxidases. Detailed mecha-
nism is under investigation and further studies are
aimed at improve this system to become more appli-
cable to different varieties of alcohols.
R. A. Sheldon, Adv. Inorg. Chem. 2006, 58, 235;
e) M. M. Whittaker, J. W. Whittaker, Biochemistry
2
001, 40, 7140–7148.
4] a) K. Sato, M. Aoki, R. Noyori, Science 1998, 281,
646; b) R. A. Sheldon, I. W. C. E. Arends, G.-J. T.
Brink, A. Dijksman, Acc. Chem. Res. 2002, 35, 774–
81; c) Advances in Catalytic Activation of Dioxygen by
[
1
7
Metal Complexes, (Ed.: L. I. Simndi), Kluwer, Dor-
drecht, 2003; d) I. W. C. E Arends, R. A. Sheldon,
Modern Oxidation Methods, (Ed.: J.-E. Bꢄckvall),
Wiley, Weinheim, 2004; e) S. Stahl, Angew. Chem.
2
3
004, 116, 3480–3501; Angew. Chem. Int. Ed. 2004, 43,
400–3420; f) N. Jiang, D. Vinci, Ch. L. Liotta, Ch. A.
Experimental Section
Eckert, A. J. Ragauskas, Ind. Eng. Chem. Res. 2008, 47,
General Procedure for the Aerobic Oxidation of
Benzyl Alcohol Catalyzed by CuCl2
627- 631.
[5] a) I. E. Markꢁ, P. R. Giles, M. Tsukazaki, I. Chellꢅ-
Regnaut, A. Gautier, S. M. Brown, C. J. Urch, J. Org.
Chem. 1999, 64, 2433–2439; b) I. E. Markꢁ, P. R. Giles,
M. Tsukazaki, S. M. Brown, C. J. Urch, Science 1996,
Alcohol substrate (1 mmol), CuCl ·2H O (1.70 mg,
2
2
0
.01 mmol), Cs CO (392 mg, 1.2 mmol) were added in tolu-
2 3
ene (5 mL), the mixture was stirred under oxygen in 408C
for 12 h (CAUTION: volatile organic solvents in combina-
tion with pure oxygen maybe explosive!). The solution was
then filtered on a thin layer silicon chromatograph and ana-
lyzed by GC (chlorobenzene was used as internal standard).
Reaction mxitures were worked up by flash column chroma-
tography (petroleum ether/EtOAc 20:1) to give the pure al-
dehydes.
2
74, 2044; c) I. E. Markꢁ, A. Gautier, R. Dumeunier,
K. Doda, F. Philippart, S. M. Brown, C. J. Urch, Angew.
Chem. 2004, 116, 1614–1617; Angew. Chem. Int. Ed.
2
004, 43, 1588–1591.
6] a) Y. Wang, T. D. P. Stack, J. Am. Chem. Soc. 1996, 118,
3097–13098; b) Y. Wang, J. L. DuBois, B. Hedman,
[
[
[
1
K. O. Hodgson, T. D. P. Stack, Science 1998, 279, 537;
c) V. Mahadevan, J. L. DuBois, B. Hedman, K. O.
Hodgson, T. D. P. Stack, J. Am. Chem. Soc. 1999, 121,
5
583–5584; d) V. Mahadevan, R. J. M. Klein Gebbink,
T. D. P. Stack, Curr. Opin. Chem. Biol. 2000, 4, 228–
34.
Acknowledgements
2
7] a) P. Chaudhuri, M. Hess, U. Flçrke, K. Wieghardt,
The support of the National Scientific Foundation of China
Angew. Chem. 1998, 110, 2340; Angew. Chem. Int. Ed.
(
no. 20971007) is gratefully acknowledged.
1
998, 37, 2217; b) P. Chaudhuri, M. Hess, T. Weyher-
mꢆller, K. Wieghardt, Angew. Chem. 1999, 111, 1165–
168; Angew. Chem. Int. Ed. 1999, 38, 1095–1098; P.
1
References
Chaudhuri, M. Hess, J. Muller, K. Hildenbrand, E. Bill,
T. Weyhermuller, K. Wieghardt, J. Am. Chem. Soc.
[
1] Selected reviews and examples: a) L. Q. Hatcher, K. D.
Karlin, J. Biol. Inorg. Chem. 2004, 9, 669–683; b) H.-B.
Kraatz, N. Metzler-Nolte, Concepts and Models in Bio-
inorganic Chemistry, 1st edn., Wiley-VCH, Weinheim,
1
999, 121, 9599–9616.
8] Selected examples: a) S. Itoh, M. Taki, S. Fukuzumi,
Coord. Chem. Rev. 2000, 198, 3–20; b) M. Taki, H.
Kumei, S. Nagatomo, T. Kitagawa, S. Itoh, S. Kukuzu-
mi, Inorg. Chim. Acta 2000, 300, 622–632; c) G. Ragag-
nin, B. Betzemeier, S. Quici, P. Knochel, Tetrahedron
2
006; c) L. Que, W. B. Tolman, Nature 2008, 455, 333–
3
40; d) A. P. Cole, D. E. Root, P. Mukherjee, E. I. Solo-
mon, T. D. P. Stack, Science 1996, 273, 1848–1850;
e) M. Taki, S. Teramae, S. Nagatomo, Y. Tachi, T. Kita-
gawa, S. Itoh, S. Fukuzumi, J. Am. Chem. Soc. 2002,
2
2
002, 58, 3985; d) I. A. Ansari and R. Gree, Org. Lett.
002, 4, 1507; e) P. Gamez, I. W. C. E. Arends, J. Reed-
ijk, R. A. Sheldon, Chem. Commun. 2003, 2414–2415;
f) P. J. Figiel, A. M. Kirillov, Y. Y. Karabach, M. N. Ko-
pylovich, A. J. L. Pombeiro, J. Mol. Catal. A 2009, 305,
1
24, 6367–6377.
[
2] a) E. I. Solomon, U. M. Sundaram, T. E. Machonkin,
Chem. Rev. 1996, 96, 2563–2605; b) E. I. Solomon, P.
Chen, M. Metz, S. K. Lee, A. E. Palmer, Angew. Chem.
1
78–182.
9] A. C. Frisch, M. Beller, Angew. Chem. 2005, 117, 680–
95; Angew. Chem. Int. Ed. 2005, 44, 674–688.
[
2
4
001, 113, 4702–4724; Angew. Chem. Int. Ed. 2001, 40,
570–4590; c) L. M. Mirica, X. Ottenwaelder, T. D. P.
6
[
10] a) M. F. Semmelhack, C. R. Schmid, D. A. Cortꢅs, C. S.
Chou, J. Am. Chem. Soc. 1984, 106, 3374; b) M. F. Sem-
melhack, C. R. Schmid, D. A. Cortꢅs, Tetrahedron Lett.
Stack, Chem. Rev. 2004, 104, 1013–1045; d) S. I. Chan,
S. S. F. Yu, Acc. Chem. Res. 2008, 41,969–979; e) R. A.
Himes, K. D. Karlin, Curr. Opin. Chem. Biol. 2009, 13,
1
986, 27, 1119.
1
19–131.
[
[
11] C. Li, A. P. John Jr, J. Org. Chem. 2005, 70, 6053–6065.
12] H. J. Sun, K. Harms, J. Sundermeyer, J. Am. Chem.
Soc. 2004,126, 9550–9551.
[3] a) D. J. Kosman, in: Copper Proteins and Copper En-
zymes, (Ed.: R. Lontie), CRC Press, Boca Raton, FL,
1
984, Vol. 2, pp 1–26; b) M. M. Whittaker, J. W. Whit-
taker, Biophys. J. 1993, 64, 762; c) J. P. Klinman, Chem.
Rev. 1996, 96, 254; d) P. Gamez, I. W. C. E. Arends and
[13] A. Dijksman, I. W. C. E. Arends, R. A. Sheldon, Org.
Biomol. Chem. 2003, 1, 3232–3237.
2376
ꢂ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2010, 352, 2371 – 2377