Snm as a Photolabile Protecting Group for the Cysteinyl Radical
a spectral range between 0 and 3160 cmϪ1, resulting in an interfero-
FULL PAPER
by the Deutsche Forschungsgemeinschaft (Sonderforschungs-
gram containing 1060 points. The signal is averaged 20 times per bereich 452) and the Fonds der Chemischen Industrie.
sampling position. In all experiments, a time range of 20 µs is re-
[1]
M. Volk, Eur. J. Org. Chem. 2001, 14, 2605Ϫ2621.
T. W. Scott, S. N. Liu, J. Phys. Chem. 1989, 93, 1393Ϫ1396.
N. P. Ernsting, Chem. Phys. Lett. 1990, 166, 221Ϫ226.
N. A. Borisevich, N. A. Lysak, S. V. Melnichuk, S. A. Tikhomi-
rov, G. B. Tolstorozhev, in: Ultrafast Phenomena in Spectro-
scopy, vol. 49 (Eds.: E. Klose, B. Wilhelmi), Springer-Verlag,
Berlin, Heidelberg, 1990, pp. 276Ϫ281.
Y. Hirata, Y. Niga, T. Okada, Chem. Phys. Lett. 1994, 221,
283Ϫ288.
M. Volk, Y. Kholodenko, H. S. M. Lu, E. A. Gooding, W. F.
DeGrado, R. M. Hochstrasser, J. Phys. Chem. B 1997, 101,
8607Ϫ8616.
H. S. M. Lu, M. Volk, Y. Kholodenko, E. Gooding, R. M. H.
Hochstrasser, W. F. DeGrado, J. Am. Chem. Soc. 1997, 119,
7173Ϫ7180.
D. W. Grant, J. H. Stewart, Photochem. Photobiol. 1984, 40,
285Ϫ290.
G. H. Morine, R. R. Kuntz, Photochem. Photobiol. 1981, 33,
1Ϫ5.
S. P. Mezyk, Chem. Phys. Lett. 1995, 235, 89Ϫ93.
M. Z. Hoffman, E. Hayon, J. Phys. Chem. 1973, 77, 990Ϫ996.
S. A. Everett, C. Schöneich, J. H. Stewart, K. D. Asmus, J.
Phys. Chem. 1992, 96, 306Ϫ314.
corded with a resolution of 25 ns. After FT, the average of 20 suc-
cessive spectra is calculated to achieve a better signal-to-noise ratio,
resulting in an effective time resolution of 500 ns. If necessary, this
figure can be improved by averaging a smaller number of spectra.
The sample is dissolved (between 1.0 and 6.0 g·LϪ1 depending on
the layer thickness of the cell) in acetonitrile (Riedel-de Hae¨n, spec-
troscopic grade) and purged with argon for at least 45 min.
[2]
[3]
[4]
[5]
[6]
Laser Flash Photolysis: A standard LFP set-up was used, consisting
of a Spectra-Physics Quanta-Ray LAB 130 Nd-YAG laser, oper-
ated at 1 Hz and 266 nm (50 mJ/pulse, 8 ns pulse duration), a
pulsed Xe arc lamp by Müller, Germany, a TRIAX 180 monoch-
romator coupled to a photoelectron multiplier tube, and a LeCroy
9361 digital oscilloscope. The entire set-up was controlled from a
personal computer using LabView software. Data evaluation was
performed using SigmaPlot software. In order to avoid depletion
of the precursor and product build-up, a flow-cell was used.
Quenching experiments were performed in the same way, except
that the flow-cell was replaced by a static cell. The concentration
of 4 was adjusted so that an optical density of 0.3 was achieved at
the laser wavelength used for excitation.
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
A. L. Schroll, G. Barany, J. Org. Chem. 1989, 54, 244Ϫ247.
C. Allin, K. Gerwert, Biochemistry 2001, 40, 3037Ϫ3046.
C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev.
1999, 99, 1991Ϫ2069.
G. Bucher, M. Halupka, C. Kolano, O. Schade, W. Sander, Eur.
J. Org. Chem. 2001, 3, 545Ϫ552.
Calculations: Calculations were performed with the Gaussian98[28]
suite of programs. Transition states, energies, vibrational and
UV spectra were calculated using B3LYP or MP2 theory with a
6-311ϩϩG(d,p) or 6-31ϩG(d,p) basis set.
[16]
[17]
[18]
[19]
´
R. Zhao, J. Lind, G. Merenyi, T. E. Eriksen, J. Am. Chem. Soc.
1998, 120, 2811Ϫ2816.
Product Studies: Photolyses were performed using acetonitrile or
[D3]acetonitrile and an Nd-YAG laser (Spectra-Physics Quanta-
Ray LAB 100) operating at λexc ϭ 266 nm with a repetition rate of
10 Hz. The preparative photolysis was carried out with 0.6 W·sϪ1
for 1 h. Samples (0.04 mol/L) were poured in quartz NMR tubes
and degassed by the use of a supersonic bath and the ‘‘freeze-and-
´
R. Zhao, J. Lind, G. Merenyi, T. E. Eriksen, J. Phys. Chem. A
1999, 103, 71Ϫ74.
J. Fournier, C. Lalo, J. Deson, C. Vermeil, J. Chem. Phys. 1977,
66, 2656Ϫ2659.
M. M. Sharma, Trans. Faraday Soc. 1964, 61, 681Ϫ688.
B. D. Wagner, G. Ruel, J. Lusztyk, J. Am. Chem. Soc. 1996,
118, 13Ϫ19.
E. Leyva, M. S. Platz, B. Niu, J. Wirz, J. Phys. Chem. 1987,
91, 2293Ϫ2298.
K. Griesbaum, Angew. Chem. 1970, 82, 276Ϫ290; Angew.
Chem. Int. Ed. Engl. 1970, 9, 273Ϫ287.
W. K. Busfield, K. Heiland, I. D. Jenkins, Tetrahedron Lett.
1995, 36, 1109Ϫ1112.
W. K. Busfield, K. Heiland, I. D. Jenkins, Tetrahedron Lett.
1994, 35, 6541Ϫ6542.
G. Barany, A. L. Schroll, A. W. Mott, D. A. Halsrud, J. Org.
Chem. 1983, 48, 4750Ϫ4761.
[20]
[21]
1
pump’’ technique. The tubes were fused and H, 13C, and HMQC
NMR spectra were taken before and after the photolysis (Bruker,
Avance DPX 200, 200.13 MHz and Bruker, Avance DRX 600,
600.13 MHz).
[22]
[23]
[24]
[25]
[26]
[27]
[28]
Nitrogen Cryostat: Measurements were carried out in acetonitrile
solutions at 230 K in a liquid-nitrogen cryostat (Oxford, DN1714
equipped with Suprasil windows). Samples were poured into self-
made quartz cuvettes (length 60 cm, diameter 1.0 cm), degassed in
the same way as described for the preparative photolysis and sealed
with a stopper. For irradiation, we used a high-pressure mercury
lamp (Mercury Light Source 200, Bausch & Lomb, Rochester, NY,
USA) with a monochromator (Bausch & Lomb, grating 1200
grooves/mm) operating at λexc ϭ 265 nm. UV spectra were recorded
S. Ranganathan, N. Tamilarasu, R. Roy, Tetrahedron 1996,
52, 9823Ϫ9834.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgom-
ery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Mil-
lam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J.
Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Po-
melli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P.
Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A.
G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challac-
ombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L.
Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh,
PA, USA, 1998.
every minute for
1
h
with
a
diode-array spectrometer
(HewlettϪPackard, HP 8452) in the spectral range 210Ϫ700 nm
with a resolution of 2 nm. To avoid influences on the sample by
the deuterium lamp of the spectrometer, the scan time was set to
0.5 s.
Synthesis: The precursor BOCϪCys(Snm)ϪOH was synthesized
according to a literature procedure described by Barany et al.,[13]
except that the workup was modified slightly.
Acknowledgments
C. K. is indebted to PD Dr. G. Bucher for his introduction and
advice to the LFP technique. This work was financially supported
Received August 14, 2002
[O02468]
Eur. J. Org. Chem. 2003, 1074Ϫ1079
1079