S. Ouk et al. / Tetrahedron Letters 43 (2002) 2661–2663
2663
When this catalyst system (K2CO3/Bu4NBr) was used
with phenol and p-cresol, 100% conversion and selectiv-
ity to O-methylated products was achieved only after a
few hours (entries 17–18 and 21–24, Table 2). The
attempt to reduce the PTC amount led to a poor yield
(entries 14–16 and 19–20, Table 2), but longer reaction
times can improve the reaction yield (entries 15–16,
Table 2).
5. Dorothea, G. Phenol derivatives. Ullmann’s Encyclopedia
of Industrial Chemistry; Barbara, E.; Stephen, H.; Gail,
S., Eds.; VCH: Weinheim, 1991; Vol. A19.
6. Iori, G.; Romano, U. Patent GB 2,026,484 A, 1981, CAS
No 93:167894b.
7. Merger, F.; Tovae, F.; Schroff, L. Patent US 4,192,949,
1980, CAS No 92:6229c.
8. Thompson, R. B. Patent EP 0,104,598, 1984, CAS No
101:151578z.
The different reactivity between phenols can be
explained by the negative inductive effect (I− effect) of
the (C6H5)CO group of 2,4-DHB, which creates
difficulty in the reaction between the phenoxy ion with
DMC. The negative charge on the oxygen atom of the
phenoxy ion formed in situ by the reaction of the base
with 2,4-DHB is weakened by the attraction of this
effect. On the contrary, the I+ effect of the methyl
group of p-cresol accelerates the reaction kinetics.
9. Barcelo, G.; Grenouillat, D.; Senet, J. P.; Sennyey, G.
Tetrahedron 1990, 46, 1839–1848.
10. Lee, Y.; Shimizu, I. Synlett 1998, 1063–1064.
11. Notari, N.; Mizia, F.; Rivetti, F. Patent US 5,849,955,
1998, CAS No 129:54182m.
12. Perosa, A.; Selva, M.; Tondo, P.; Zordan, F. Synlett
2000, 272–274.
13. Watabiki, M. Patent JP 06-145091, 1994, CAS No
121:204948s.
14. Fu, Z. H.; Ono, Y. Catal. Lett. 1993, 21, 43–47.
15. Rhodes, R.; Nightingale, P. Patent WO 86/03485, 1986,
CAS No 105:190655z.
16. Fu, Y.; Baba, T.; Ono, Y. Appl. Catal. A 1998, 166,
419–424.
17. Fu, Y.; Baba, T.; Ono, Y. Appl. Catal. A 1998, 166,
425–430.
18. Fu, Y.; Baba, T.; Ono, Y. Appl. Catal. A 1999, 176,
201–204.
19. Bomben, A.; Selva, M.; Tundo, P.; Valli, L. Ind. Eng.
Chem. Res. 1999, 38, 2075–2079.
20. Tundo, P.; Trotta, F.; Moraglio, G. React. Polym. 1989,
10, 185–188.
21. Tundo, P.; Selva, M. ChemTech. 1995, 25, 31–35.
22. Selva, M.; Trotta, F.; Tundo, P. J. Chem. Soc., Perkin
Trans. 1992, 2, 519–522.
Although we note that tetrabutylammonium bromide
alone can act as a catalyst (entry 25, Table 2), the yield
of the reaction is reduced to 45%, even if the molar
ratio is doubled. Moreover, the base alone is unable to
make the reaction take place (entry 26, Table 2).
In conclusion, we have presented an efficient method to
synthesise aryl methyl ethers by using the environmen-
tal safe, DMC as reagent. The reaction takes place
under mild conditions of temperature and pressure,
while good to excellent yields (95–99%) are obtained.
Furthermore, the catalysts (base and PTC) can be easily
recovered and regenerated.
23. Tundo, P.; Moraglio, G.; Trotta, F. Ind. Eng. Chem. Res.
1989, 28, 881–890.
References
24. Tundo, P.; Trotta, F.; Moraglio, G.; Ligorati, F. Ind.
Eng. Chem. Res. 1988, 27, 1565–1571.
25. Lissel, M.; Schmidt, S.; Neumann, B. Synthesis 1986, 5,
382–383.
26. Berris, B. C. Patent US 5030757, 1991, CAS No
115:114015g.
1. Memoli, S.; Selva, M.; Tundo, P. Chemosphere 2001, 43,
115–121.
2. Ono, Y. Appl. Catal. A 1997, 155, 133–166.
3. Ono, Y. Pure Appl. Chem. 1996, 68, 367–375.
4. Mauri, M. M.; Romano, U.; Rivetti, F. Ing. Chim. Ital.
1985, 21, 1–3.