nucleophilicities (l values) and the sensitivities to changes in the
substituent (ρ values) vary over a narrower range than with the
Malaysia) for financial support. D. N. K. thanks Professor
H. Mayr (Universität München) for hospitality during the time
that this manuscript was being prepared. We thank Dr M. J.
D’Souza for assistance with the statistical analyses.
18,23
previously studied tosylates.
These observations both sug-
gest that there is a much more limited variation in the structure
of the S 2 transition state for solvolyses of the benzylsulfonium
N
ions than for the solvolyses of the benzyl tosylates. This is con-
sistent with the major influence of solvent variation being only
in the nucleophilic push for solvolyses of the sulfonium ions but
with this effect being accompanied by appreciable variations in
the electrophilic pull for solvolyses of the tosylate esters.
References
1 E. Grunwald and S. Winstein, J. Am. Chem. Soc., 1948, 70, 846.
2 (a) F. L. Schadt, T. W. Bentley and P. v. R. Schleyer, J. Am. Chem.
Soc., 1976, 98, 7667; (b) T. W. Bentley, in Nucleophilicity, eds. J. M.
Harris and S. P. McManus, Advances in Chemistry Series, No. 215,
American Chemical Society, Washington, D.C., 1987, pp. 255–268.
3 T. W. Bentley and G. Llewellyn, Prog. Phys. Org. Chem., 1990, 17,
Experimental
1
21.
Solvents were purified and kinetic runs carried out as previously
4 D. N. Kevill and S. W. Anderson, J. Am. Chem. Soc., 1986, 108,
11
described.
1579.
5
D. N. Kevill, in Advances in Quantitative Structure-Property
Relationships, ed. M. Charton, JAI Press, Greenwich, Connecticut,
(
Arylmethyl)methylphenylsulfonium triflates
1
996, vol. 1, pp. 81–115.
The procedure followed that previously reported for the prepar-
6
S. Winstein, A. H. Fainberg and E. Grunwald, J. Am. Chem. Soc.,
14
ation of (p-methoxybenzyl)dimethylsulfonium triflate, but
with an equivalent amount of methyl phenyl sulfide substituted
for dimethyl sulfide. The benzyl bromide and five ring-
substituted derivatives were used in the syntheses as received
1
957, 79, 4146.
7 M. Fujio, Y. Saeki, K. Nakamoto, K. Yatsugi, N. Goto, S. H. Kim,
Y. Tsuji, Z. Rappoport and Y. Tsuno, Bull. Chem. Soc. Jpn., 1995,
6
8, 2603.
8
9
S. Winstein, E. Grunwald and H. W. Jones, J. Am. Chem. Soc., 1951,
73, 2700.
(
Aldrich, 95–99%). The products were all obtained as white
1
crystals. The H NMR spectra contain a pair of doublets for the
benzylic hydrogens, due to these hydrogens being prochiral
within a monochiral sulfonium ion.
A. R. Katritzky and B. Brycki, (a) J. Am. Chem. Soc., 1986, 108,
7
295; (b) Chem. Soc. Rev., 1990, 19, 803.
10 D. N. Kevill and G. M. L. Lin, J. Am. Chem. Soc., 1979, 101, 3916.
1
2
p-Methyl derivative. Mp 111–112 ЊC; H NMR ([ H ]CH -
11 D. N. Kevill and S. W. Anderson, J. Org. Chem., 1991, 56, 1845.
3
3
1
1
1
2 K.-T. Liu, C.-P. Chin, Y.-S. Lin and M.-L. Tsao, J. Chem. Res. (S),
997, 18.
3 K.-T. Liu, Y.-S. Lin and M.-L. Tsao, J. Phys. Org. Chem., 1998, 11,
23.
CN): 2.32 (s, 3H), 3.21 (s, 3H), 4.68 (d, J = 12.7 Hz, 1H), 4.85
d, J = 12.7 Hz, 1H), 7.07 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.2
Hz, 2H), 7.6–7.9 (m, 5H); IR (KBr) includes 3109, 3036, 2947,
1
(
2
Ϫ1
2
930, 1613, 1516, 1432, 1267, 1030, 820, 637 cm ; Calc. for
4 D. N. Kevill, N. HJ Ismail and M. J. D’Souza, J. Org. Chem., 1994,
59, 6303.
C H O S F : C, 50.78; H, 4.53; S, 16.94. Found: C, 50.79; H,
16
17
3
2
3
4
.50; S, 17.23%.
Unsubstituted compound. Mp 60–62 ЊC; H NMR ([ H ]CH -
15 D. N. Kevill and M. J. D’Souza, J. Chem. Soc., Perkin Trans. 2, 1995,
73.
6 D. N. Kevill and M. J. D’Souza, J. Chem. Soc., Perkin Trans. 2, 1997,
57.
7 D. N. Kevill and M. J. D’Souza, J. Chem. Res. (S), 1996, 286; (M),
996, 1649.
1
2
9
3
3
1
1
CN): 3.18 (s, 3H), 4.72 (d, J = 12.6 Hz, 1H), 4.88 (d, J = 12.6
Hz, 1H), 7.20 (d, J = 7.9 Hz, 2H), 7.3–7.5 (m, 3H), 7.6–7.9 (m,
2
5
1
H); IR (KBr) includes 3129, 2950, 1657, 1448, 1279, 1246,
1
Ϫ1
030, 748, 698 cm ; Calc. for C H O S F : C, 49.44; H, 4.15;
18 D. N. Kevill, M. J. D’Souza and H. Ren, Can. J. Chem., in the press.
19 D. N. Kevill, S. W. Anderson and N. HJ Ismail, J. Org. Chem., 1996,
15
15
3
2
3
S, 17.60. Found: C, 49.50; H, 4.00; S, 17.81%.
p-Bromo derivative. Mp 120–122 ЊC; H NMR ([ H ]CH -
1
2
6
1, 7256.
3
3
2
2
2
2
0 D. N. Kevill and S. W. Anderson, J. Org. Chem., 1986, 51, 5029.
1 D. N. Kevill and N. HJ Ismail, J. Org. Chem., 1991, 56, 3454.
2 D. N. Kevill and N. HJ Ismail, J. Chem. Res. (S), 1991, 130.
3 D. N. Kevill and H. Ren, J. Org. Chem., 1989, 54, 5654.
CN): 3.19 (s, 3H), 4.69 (d, J = 12.7 Hz, 1H), 4.86 (d, J = 12.7
Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.5–
7
1
.9 (m, 5H); IR (KBr) includes 3075, 3032, 2934, 1593, 1489,
449, 1271, 1071, 1030, 839, 637, 571 cm ; Calc. for
Ϫ1
24 (a) M. Fujio, T. Susuki, M. Goto, Y. Tsuji, K. Yatsugi, Y. Saeki,
S. H. Kim and Y. Tsuno, Bull. Chem. Soc. Jpn., 1994, 67, 2233;
C H O S F Br: C, 40.64; H, 3.18; S, 14.46. Found: C, 41.10;
15
14
3
2
3
(
b) M. Fujio, T. Susuki, M. Goto, Y. Tsuji, K. Yatsugi, S. H. Kim,
H, 3.36; S, 14.92.
m-Fluoro derivative. Mp 54–55 ЊC; H NMR ([ H ]CH CN):
1
2
G. A.-W. Ahmed and Y. Tsuno, Bull. Chem. Soc. Jpn., 1995, 68, 673.
5 J. E. Leffler and E. Grunwald, Rates and Equilibria of Organic
Reactions, Wiley, New York, 1963, pp. 203–210.
6 D. N. Kevill, W. A. Kamil and S. W. Anderson, Tetrahedron Lett.,
1982, 23, 4635.
27 T. W. Bentley and G. E. Carter, J. Am. Chem. Soc., 1982, 104, 5741.
8 D. N. Kevill, S. W. Anderson and E. K. Fujimoto, in Nucleophilicity,
eds. J. M. Harris and S. P. McManus, Advances in Chemistry Series,
No. 215, American Chemical Society, Washington, D.C., 1987, pp.
3
3
2
2
3
6
1
.20 (s, 3H), 4.71 (d, J = 12.7 Hz, 1H), 4.89 (d, J = 12.7 Hz, 1H),
.9–7.9 (m, 9H); IR (KBr) includes 3020, 2920, 1590, 1450,
Ϫ1
260, 1030, 760, 690 cm ; Calc. for C H O S F : C, 47.13;
15
14
3
2
4
H, 3.66; S, 16.77. Found: C, 47.00; H, 3.87; S, 17.21%.
1
H
NMR
2
p-Trifluoromethyl derivative. Mp 83–85 ЊC;
2
(
[ H ]CH CN): 3.21 (s, 3H), 4.77 (d, J = 12.9 Hz, 1H), 4.95 (d,
3
3
J = 12.9 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.5–7.9 (m, 7H); IR
2
70–274.
(
8
KBr) includes 3020, 2950, 1620, 1440, 1325, 1270, 1150, 1030,
2
9 J. K. Kochi and G. S. Hammond, J. Am. Chem. Soc., 1953, 75, 3445.
30 Y. Yukawa, Y. Tsuno and M. Sawada, Bull. Chem. Soc. Jpn., 1966,
39, 2274.
1 M. Fujio, M. Goto, T. Susuki, M. Mishima and Y. Tsuno, Bull.
Chem. Soc. Jpn,, 1990, 63, 1146.
2 M. Fujio, M. Goto, T. Susuki, M. Mishima and Y. Tsuno, J. Phys.
Org. Chem., 1990, 3, 449.
3 Y. Okamoto and H. C. Brown, J. Org. Chem., 1957, 22, 485.
Ϫ1
55, 750, 690 cm ; Calc. for C H O S F : C, 44.44; H, 3.26;
16
14
3
2
6
S, 14.83. Found: C, 44.43; H, 3.22; S, 14.76%.
p-Nitro derivative. Mp 91–93 ЊC; H NMR ([ H ]CH CN):
1
2
3
3
3
3
3
3
7
2
1
.23 (s, 3H), 4.80 (d, J = 12.8 Hz, 1H), 4.97 (d, J = 12.8 Hz, 1H),
.41 (d, J = 8.8 Hz, 2H), 7.5–7.9 (m, 5H), 8.16 (d, J = 8.8 Hz,
H); IR (KBr) includes 3027, 2992, 2940, 1607, 1526, 1422,
Ϫ1
356, 1275, 1028, 860 cm ; Calc. for C H O NS F : C, 44.01;
15
14
5
2
3
H, 3.45; N, 3.42; S, 15.66. Found: C, 44.13; H, 3.45; N, 3.41;
S, 16.19%.
Paper 8/03859G
Received 21st May 1998
Accepted 11th June 1998
Acknowledgements
N. HJ I. thanks the Institut Teknologi MARA (Selangor,
1
868
J. Chem. Soc., Perkin Trans. 2, 1998