C O M M U N I C A T I O N S
Table 1. Photolysis in Acetonitrile with Cyclohexene
Scheme 3
yields (%)a
ylide
Φ-
ylide
Φ+
sulfide
5
6
10
5/6
2
3
4
0.25 ( 0.02
0.20 ( 0.01
0.18 ( 0.01
0.25 ( 0.01
0.20 ( 0.02
0.17 ( 0.01
18.4
40.6
44.1
3.5
8.0
9.2
15
5.0 ( 0.8
5.2 ( 0.8
4.8 ( 0.1
a Relative to sulfide formation, or sulfide + 10 for 2 as precursor. Φ+sulfide
also includes 10 for precursor 2.
Table 2. Photolysis of 2-4 in Methanol
product yields (%)a
ylide
Φ-
ylide
Φ+
sulfide
8
9
10
2
3
4
0.21 ( 0.03
0.12 ( 0.01
0.17 ( 0.01
0.20 ( 0.03
0.12 ( 0.01
0.16 ( 0.02
52
70
54
5
5
39
22
2-Sensb,c
3-Sensc
4-Sensc
structurally related N-benzoyl dibenzothiophene sulfilimine has been
shown to yield both singlet and triplet benzoyl nitrene.19
7
9
65
57
Acknowledgment. We thank the National Science Foundation
(Grant CHE-0211371) for support of this research.
a Relative to sulfide formation or sulfide + 10. Φ+sulfide also includes
10 for precursor 2. b Overlapping absorption spectra made experiment
impractical. c Sensitized with benzophenone.
Supporting Information Available: Experimental details. This
or dibenzothiophene toward dicarbomethoxycarbene would lead to
an apparently lower overall quantum yield, if the product so-formed
was the original ylide. If another product was formed, then the
overall quantum yield might not change, but the total yield of 5
and 6 would. Indeed, with 2 as a precursor, a fraction of the
thiophene is trapped as 10. (We did not observe 11.)
However, if both 2* and the carbene contributed to the yields of
5 and 6 (on direct irradiation of 2), then a pathological coincidence
of rate constants would have to occur for the observed ratio of 5/6
to remain the same when 3 or 4 were used. Thus, the ratios of
products 5/6 shown in Table 2 are most easily interpreted in terms
of a single common intermediate, that is, dicarbomethoxycarbene.
Direct irradiation of ylides 2, 3, or 4 in methanol provided the
carbene-methanol adduct 8 and small amounts of the double
hydrogen abstraction 9 (Table 2). The C-H insertion product 10
was formed in the case of 2 as a precursor.
Product study using CD3OD as solvent distinguishes whether
the adduct 8 arises through formation of the ketene (Scheme 3),
either via carbene formation (path a, then c) or by direct rearrange-
ment of the excited-state of the precursor (path b). The overall yields
for 8, 9, and 10 were essentially identical as when CH3OH was
used. Using CD3OD, only the ester methyl of 8 was observed by
1H NMR, even at complete conversion, ruling out intervention of
the ketene in the reaction pathway.
References
(1) Bogdanova, A.; Popik Vladimir, V. J. Am. Chem. Soc. 2004, 126, 11293-
11302.
(2) Jones, M., Jr.; Ando, W.; Hendrick, M. E.; Kulczycki, A., Jr.; Howley,
P. M.; Hummel, K. F.; Malament, D. S. J. Am. Chem. Soc. 1972, 94,
7469-7479.
(3) Wang, J.-L.; Toscano, J. P.; Platz, M. S.; Nikolaev, V.; Popik, V. J. Am.
Chem. Soc. 1995, 117, 5477-5483.
(4) Platz, M. M.; White, W. R.; Modarelli, D. A.; Celebi, S. Res. Chem. Int.
1994, 20, 175-193.
(5) Fox, J. M.; Scacheri, J. E. G.; Jones, K. G. L.; Jones, M., Jr.; Shevlin, P.
B.; Armstrong, B.; Sztyrbicka, R. Tetrahedron Lett. 1992, 33, 5021-
5024.
(6) Celebi, S.; Leyva, S.; Modarelli, D. A.; Platz, M. S. J. Am. Chem. Soc.
1993, 115, 8613-8620.
(7) Liu, M. T. H. Acc. Chem. Res. 1994, 27, 287-294.
(8) Motschiedler, K. R.; Toscano, J. P.; Garcia-Garibay, M. A. Tetrahedron
Lett. 1997, 38, 949-952.
(9) Motschiedler, K. R.; Gudmundsdottir, A.; Toscano, J. P.; Platz, M. S.;
Garcia-Garibay, M. A. J. Org. Chem. 1999, 64, 5139-5147.
(10) Sugiyama, M. H.; Celebi, S.; Platz, M. S. J. Am. Chem. Soc. 1992, 114,
966.
(11) Gregory, D. D.; Wan, Z.; Jenks, W. S. J. Am. Chem. Soc. 1997, 119,
94-102.
(12) McCulla, R. D.; Jenks, W. S. J. Am. Chem. Soc. 2004, 126, 16058-
16065.
(13) Nag, M.; Jenks, W. S. J. Org. Chem. 2004, 69, 8177-8182.
(14) Gurria, G. M.; Posner, G. H. J. Org. Chem. 1973, 38, 2419-2420.
(15) Kumazoea, K.; Arima, K.; Mataka, S.; Walton, D. J.; Thiemann, T. J.
Chem. Res., Synop. 2003, 60-61.
(16) Thiemann, T.; Ohira, D.; Arima, K.; Sawada, T.; Mataka, S.; Marken, F.;
Compton, R. G.; Bull, S. D.; Davies, S. G. J. Phys. Org. Chem. 2000, 13,
648-653.
On benzophenone-sensitized photolysis of 3 or 4, the major
product was 9. The most economical conclusion is that triplet-to-
singlet intersystem crossing by the carbene is comparatively slow,
and is kinetically competitive with the formation of methyl
malonate.3,25 The very fast rate constant for trapping of singlet
(17) Lucien, E.; Greer, A. J. Org. Chem. 2001, 66, 4576-4579.
(18) Thomas, K. B.; Greer, A. J. Org. Chem. 2003, 68, 1886-1891.
(19) Desikan, V.; Liu, Y.; Toscano, J. P.; Jenks, W. S. J. Org. Chem. 2007,
72, 6848-6859.
(20) El Amoudi, M. E. F.; Geneste, P.; Olive, J. L. J. Org. Chem. 1981, 46,
4258-4262.
(21) Stoffregen, S. A.; McCulla Ryan, D.; Wilson, R.; Cercone, S.; Miller, J.;
Jenks, W. S. J. Org. Chem. 2007, 72, 8235-8242.
(22) Peace, B. W.; Carman, F.; Wulfman, D. S. Synthesis 1971, 658-661.
(23) Bien, S.; Segal, Y. J. Org. Chem. 1977, 42, 1685-1688.
(24) Moser, W. R. J. Am. Chem. Soc. 1969, 91, 1135-1140.
(25) Bogdanova, A.; Popik, V. V. J. Am. Chem. Soc. 2003, 125, 14153-14162.
dicarbomethoxycarbene (1.5 × 109 M-1s-1 3
) implies all of the
singlet carbene should be trapped as 8. Thus, we further infer that
the differing balances between 8 and 9 in Table 2 for the different
precursors reflect the differing singlet/triplet carbene ratios initially
formed by photodissociation of the three ylides. Photolysis of the
JA076351W
9
J. AM. CHEM. SOC. VOL. 129, NO. 51, 2007 15747