ChemCatChem
10.1002/cctc.201701527
COMMUNICATION
decreased because the pore size of these materials cannot be
facilely adjusted for enzyme dimensions. Carboxylated
mesoporous carbon with pore size 10 nm has been used for the
immobilization of lysozyme by covalent cross-linking to purify the
future improvement of catalytic entities that can operate by
cooperative tandem catalysis for cascade chemical syntheses of
the future. In addition, enzyme-catalyzed methodologies can be
advanced as a straightforward approach to replace simple
biotransformations for the targeted synthesis of valuable
compounds.
[
16]
drinking water contaminated with pathogenic bacteria. Tang et
[
17]
al. applied mesoporous silica with a pore size 9.7 nm in the
immobilization of zero-valent iron particles for effective
[18]
degradation of p-nitrophenol. Piontek et al. studied the crystal
structure of a laccase from the fungus T. versicolor and it was
found that unit cell dimensions were a= 83.6 Å, b= 85.0 Å, and
Acknowledgement
c= 91.5 Å at 1.90 Å resolution with a corresponding V
m
of 2.3
The part of "synthesis of coumarin derivatives" was financially
supported by the grant No. 94-04-45-31156 from
Pharmaceutical Sciences Research Center, Tehran University of
Medical Sciences, Tehran, Iran to M.A.F.
3
Å /Da, assuming one molecule per asymmetric unit. Bertrand et
[
19]
al.
reported the laccase crystals belonging to the monoclinic
space group P21, with unit cell dimensions a= 87.72 Å, b=
1
1
10.52 Å, and c= 123.20 Å. In our study, the synthesized SBA-
5 with pore diameter 13.48 nm provides conformational stability.
Pore diameters less than 10 nm cause a decrease in protein
loading as the physical restrictions may change three
dimensional structure of enzymes.
Conflict of interest
The authors declare no conflict of interest.
Keywords: Biocatalysis • Immobilization • Laccase • Oxidation •
Coumarins
[1]
a) A. Thomas, Angew. Chem. 2010, 49, 8328; b) M. J. Climent, A.
Corma, S. Iborra, M. J. Sabater, ACS Catal. 2014, 4, 870; c) R. Schlgöl,
Angew. Chem. 2015, 54, 3465; d) L. Zhu, X. Q. Liu, H. L. Jiang, L. B.
Sun, Chem. Rev. 2017, 117, 8129.
[2]
P. J. O'Farrell, P. M. L. Anderson, Curr. Opin. Environ. Sustainability
2010, 2, 59.
[
3]
4]
M. J. Climent, A. Corma, S. Iborra, Chem. Rev. 2011, 111, 1072.
a) S. Hudson, J. Cooney, E. Magner, Angew. Chem. 2008, 47, 8582;
b) Z. Zhou, M. Hartmann, Chem. Soc. Rev. 2013, 42, 3894; c) N.
Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B.
Åkerman, Adv. Colloid Interface Sci. 2014, 205, 339.
[
[
5]
K. Engström, E. V. Johnston, O. Verho, K. P. J. Gustafson, M. Shakeri,
C.-W. Tai, J.-E. Bäckvall, Angew. Chem. 2013, 125, 14256.
J. Tao, J. H. Xu, Curr. Opin. Chem. Biol. 2009, 13, 43.
[6]
7]
[
M. Heidary, M. Khoobi, S. Ghasemi, Z. Habibi, M. A. Faramarzi, Adv.
Synth. Catal. 2014, 356, 1789.
[
8]
9]
(a) H. Forootanfar, M.A. Faramarzi, Biotechnol. Prog. 2015, 31, 1443.
(b) S. Rezaei, A. R. Shahverdi, M. A. Faramarzi, Bioresour. Technol.
2017, 230, 67.
[
a) M. Mogharabi, M. A. Faramarzi, Adv. Synth. Catal. 2014, 356, 897;
b) M. Azimi, N. Nafissi-Varcheh, M. Mogharabi, M. A. Faramarzi, R.
Aboofazeli, J. Mol. Catal. B: Enzym. 2016, 126, 69.
Figure 4. Time course study of the oxidation of salicyl alcohol using a
heterogeneous (hybrid catalyst) and homogeneous (laccase and TEMPO)
catalytic system. b) Relative laccase activity of the hybrid catalyst (dark gray)
and yield of the aerobic oxidation reaction by the heterogeneous catalyst (light
gray). Effect of pH and temperature on the yield of the oxidation reaction using
c) laccase and TEMPO d) the hybrid catalyst.
[
10] A. Das, S. S. Stahl, Angew. Chem. 2017, 56, 8892.
[11] a) A. Abad, P. Concepción, A. Corma, H. García, Angew. Chem. 2005,
44, 4066; b) Y. Yan, X. Tong, K. Wang, X. Bai, Catal. Commun. 2014,
43, 112; c) J. Rabeah, U. Bentrup, R. Stößer, A. Brȕckner, Angew.
Chem. 2015, 127, 11957; d) J. Yang, Q. Cao, W.-L. Hu, R.-R. Ye, L. He,
L.-N. Ji, P. Z. Qin, Z.-W. Mao, Dalton Trans. 2017, 46, 445.
12] D. Brunel, F. Fajula, J. B. Nagy, B. Deroide, M. J. Verhoef, L. Veumd, J.
A. Peters, H. van Bekkumd, Appl. Catal. 2001, 213, 73.
[
In summary,
a highly efficient multifunctional hybrid
catalyst was prepared based on heterogeneous materials
containing fundamentally different catalytic species. In this
hybrid catalyst, the laccase and mediator cooperate in an
unprecedented method. The hybrid catalyst was well
characterized, and the co-immobilization of TEMPO and enzyme
in the same cavities of the SBA-15 was confirmed. Furthermore,
the proximity of the two catalytic species conferred an enhanced
the efficiency of the biotransformation. The concept of co-
immobilizing catalysts with different functions into mesoporous
materials shows great promise for creating other hybrid catalysts
with unprecedented reactivity. This will be important for the
[
13] R. Liu, X. Liang, C. Dong, X. Hu, J. Am. Chem. Soc. 2004, 126, 4112.
14] B. Karimi, A. Biglari, J. H. Clark, V. Budarin, Angew. Chem. 2007, 46,
7210.
[
[15] N. M. El-Sheikh, F. A. Khalil, Food Chem. Toxicol. 2011, 49, 758.
[16] J. Wang, L. Tang, P. Somasundaran, W. Fan, G. Zeng, Y. Deng, Y.
Zhou, J. Wang, Y. Shen, J. Colloid Interface Sci. 2017, 503, 131.
[17] L. Tang, J. Tang, G. Zeng, G. Yang, X. Xie, Y. Zhou,Y. Pang, Y. Fang,
J. Wang, W. Xiong, Appl. Surf. Sci. 2015, 333, 220.
[
18] K. Piontek, M. Antorini, T. Choinowski, J. Biol. Chem. 2002, 277, 37663.
19] T. Bertrand, C. Jolivalt, P. Briozzo, E. Caminade, N. Joly, C. Madzak, C.
Mougin, Biochemistry 2002, 41, 7325.
[
4
This article is protected by copyright. All rights reserved.