E. A. Jaseer et al. / Tetrahedron Letters 51 (2010) 5009–5012
5011
the cyclization (Table 2). Acetonitrile turned out to be the best sol-
vent of choice in view of the isolated yield. Cs2CO3 as the base pro-
vided the best result in comparison with Na2CO3, K2CO3, and
K3PO4. The 1:2 ratio of CuCl2 and ligand L5 (5:10 and 10:20; entries
6 and 10) provided better results than the 1:1 complex (5:5 and
10:10; entries 11 and 12). In the 1:2 complex, both 5:10 and
10:20 ratios of CuCl2 and ligand L5, respectively, provided almost
the same yield for the intramolecular cyclization.
N-(2-bromophenyl)benzothioamide in excellent yields at 82 °C in
acetonitrile (Table 4). In case of bromo substrates, electron-with-
drawing group (entry 3), electron-releasing group (entries 2, 4,
and 7), and sterically hindered-ortho-substituted benzothioamide
(entry 5) are well tolerated and provided an excellent isolated yield
at 82 °C. 2-Ethyl-substituted benzothiazole was also synthesized in
good yield (entry 8). Importantly, substitution on the 2-bromo ani-
line moiety of N-(2-bromophenyl) benzothioamide also provided
excellent yields (entries 6 and 7).
In summary, for the first time we have demonstrated that BI-
NAM–CuCl2 can be used as an efficient catalyst for the synthesis
of 2-substituted benzothiazoles by intramolecular cyclization
through C(aryl)–S bond formation at 82 °C from very less reactive
N-(2-chlorophenyl)benzothioamide or N-(2-bromophenyl)ben-
zothioamide. The N-(2-halophenyl) benzothioamide containing
electron-withdrawing, electron-releasing groups, and sterically
hindered ortho-substituted benzothioamide is well tolerated. Sim-
ilarly, 2-alkyl-substituted benzothiazoles are also synthesized in
good yields. This synthetic method is expected to find valuable
applications in various areas, as the reaction is carried out under
mild reaction conditions. Further investigations using this method-
ology to construct biologically active benzothiazole-containing
molecules are underway.
Using the above mentioned optimized reaction conditions,15 we
initiated our investigations into the scope of the CuCl2–BINAM
complex-catalyzed intramolecular cyclization of various substi-
tuted N-(2-chlorophenyl)benzothioamide and the results are
summarized in Table 3. A wide range of N-(2-chlorophenyl)aryl-
thioamide with both electron-releasing (entries 2 and 6) and
electron-withdrawing groups (entries 3, 4, and 7) produced the
corresponding benzothiazoles in good yields using the optimal
reaction conditions. Interestingly, 2-alkyl-substituted benzothiaz-
oles were also synthesized in good yields (entries 8 and 9).
Similarly, sterically hindered ortho-substituted benzothioamide
also cyclized to give the corresponding benzothiazole in good yield
(entry 5).
The new catalytic system was also successfully utilized for the
synthesis of 2-substituted benzothiazoles from the corresponding
Acknowledgments
Table 4
We thank the DST (Project No.: SR/S1/OC-06/2008), New Delhi
for the financial support. E.A.J. thanks the CSIR, New Delhi and
D.J.C Prasad thanks the UGC, New Delhi for SRF. We thank the
DST, New Delhi for funding toward the 400-MHz NMR machine
to the department of Chemistry, IIT-Madras under the IRPHA
Scheme and for funding the ESI-MS facility under the FIST Program
Synthesis of benzothiazoles using copper(II)–BINAM coupling cyclization of N-(2-
bromophenyl) benzothioamide15
Br
S
N
S
CuCl2 (5 mol%)
BINAM (10 mol%)
R
R
N
H
R'
Cs2CO3 (2 equiv.)
acetonitrile, 82 ºC
R'
Entry Benzothioamide
Benzothiazole16
Time Yielda
(h)
(%)
References and notes
Br
S
S
N
1. (a) Bradshaw, T. D.; Westwell, A. D. Curr. Med. Chem. 2004, 11, 1009–1021;
(b) Tale, R. H. Org. Lett. 2002, 4, 1641–1642; (c) Mathis, C. A.; Wang, Y. M.;
Holt, D. P.; Huang, G. F.; Debnath, M. L.; Klunk, W. E. J. Med. Chem. 2003, 46,
2740–2754.
1
28
98
N
H
Br
S
S
N
2. (a) Bradshaw, T. D.; Westwell, A. D. Curr. Med. Chem. 2004, 11, 1241–1253; (b)
Su, X.; Vicker, N.; Ganeshapillai, D.; Smith, A.; Purohit, A.; Reed, M. J.; Potter, B.
V. L. Mol. Cell. Endocrinol. 2006, 248, 214–217; (c) Chakraborti, A. K.; Rudrawar,
S.; Kaur, G.; Sharma, L. Synlett 2004, 1533–1536; (d) Shirke, V. G.; Bobade, A. S.;
Bhamaria, R. P.; Khadse, B. G.; Sengupta, S. R. Indian Drugs 1990, 27, 350–353;
(e) Das, J.; Moquin, R. V.; Liu, C.; Doweyko, A. M.; Defex, H. F.; Fang, Q.; Pang, S.;
Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C.; Wityak, J. Bioorg. Med. Chem.
Lett. 2003, 13, 2587–2590; (f) Hays, S. J.; Rice, M. J.; Ortwine, D. F.; Johnson, G.;
Schwarz, R. D.; Boyd, D. K.; Copeland, L. F.; Vartanian, M. G.; Boxer, P. A. J.
Pharm. Sci. 1994, 83, 1425–1432; (g) Paget, C. J.; Kisner, K.; Stone, R. L.; Delong,
D. C. J. Med. Chem. 1969, 12, 1016–1018; (h) Bergman, J. M.; Coleman, P. J.; Cox,
C.; Hartman, G. D.; Lindsley, C.; Mercer, S. P.; Roecker, A. J.; Whitman, D. B. PCT
Int. Appl. WO2006127550, 2006.; (i) Yoshino, K.; Kohno, T.; Uno, T.; Morita, T.;
Tsukamoto, G. J. Med. Chem. 1986, 29, 820–825.
OMe
2
3
28
36
89
90
N
H
OMe
Br
S
N
S
S
F
N
H
F
Br
OMe
S
N
OMe
4
5
6
27
36
29
95
96
99
N
H
3. (a) Mylari, B. L.; Larson, E. R.; Beyer, T. A.; Zembrowski, W. J.; Aldinger, C. E.;
Dee, M. F.; Siegel, T. W.; Singleton, D. H. J. Med. Chem. 1991, 34, 108–122; (b)
Sato, G.; Chimoto, T.; Aoki, T.; Hosokawa, S.; Sumigama, S.; Tsukidate, K.;
Sagami, F. J. Toxicol. Sci. 1999, 24, 165–175.
Br
Me
S
Me
S
N
N
H
4. Ivanov, S. K.; Yuritsyn, V. S. Neftekhimiya 1971, 11, 99–107.
5. (a) Ben-Alloum, A.; Bakkas, S.; Soufiaoui, M. Tetrahedron Lett. 1997, 38, 6395–
6396; (b) Seijas, J. A.; Vazquez-Tato, M. P.; Carballido-Reboredo, M. R.;
Crecente-Campo, J.; Romar-Lopez, L. Synlett 2007, 313–317.
Br
S
S
S
N
N
H
6. Ranu, B. C.; Jana, R.; Dey, S. S. Chem. Lett. 2004, 33, 274–275.
7. The C–H functionalized-cyclization of thiobenzanilide using various oxidants
like K3Fe(CN)6, DDQ, Mn(OAc)3, and Dess–Martin periodinane is an alternative
for the intramolecular cyclization of N-(2-halophenyl)benzothioamide. But this
C–H functionalized cyclization generally leads to regioisomers, and only few
benzothiazoles synthesis is reported particularly from the substrates which are
not yielding regioisomers. (a) Jacobson, P. Chem. Ber. 1886, 19, 1067; (b) Bose,
D. S.; Idrees, M. Tetrahedron Lett. 2007, 48, 669–672; (c) Mu, X.; Zou, J.; Zeng, R.;
Wu, J. Tetrahedron Lett. 2005, 46, 4345–4347; (d) Bose, D. S.; Idrees, M. J. Org.
Chem. 2006, 71, 8261–8263.
Br
S
N
OMe
7
8
33
28
83
71
N
H
OMe
Br
S
N
S
N
H
8. (a) Bernardi, D.; Ba, L. A.; Kirsch, G. Synlett 2007, 2121–2123; (b) Mortimer, C.
G.; Wells, G.; Crochard, J. P.; Stone, E. L.; Bradshaw, T. D.; Stevens, M. F. G.;
Westwell, A. D. J. Med. Chem. 2006, 49, 179–185.
a
Isolated yield.