ACS Catalysis
Letter
Scheme 1. Simplified Catalytic Cycle Proposed for the
Cyclization of Alkynoic Acids Catalyzed by 1a,b
ACKNOWLEDGMENTS
■
We are grateful to the CNRS and UPS. N.N. thanks the
European Commission for a Marie Curie Intra-European
Postdoctoral Fellowship (PIEF-GA-2009-253112, INDEN). S.
Mallet-Ladeira is acknowledged for the X-ray diffraction
analysis of complex 1c. We also thank J. Lisena for the control
experiments with complex 3a.
REFERENCES
■
(1) For recent reviews/highlights, see: (a) Grutzmacher, H. Angew.
̈
Chem., Int. Ed. 2008, 47, 1814−1818. (b) Hetterscheid, D. G. H.; Van
der Vlugt, J. I.; de Bruin, B.; Reek, J. N. H. Angew. Chem., Int. Ed. 2009,
48, 8178−8181. (c) Van der Vlugt, J. I.; Reek, J. N. H. Angew. Chem.,
Int. Ed. 2009, 48, 8832−8846. (d) Van der Vlugt, J. I. Eur. J. Inorg.
Chem. 2012, 363−375. (e) Askevild, B.; Roesky, H. W.; Schneider, S.
ChemCatChem 2012, 4, 307−320.
(2) (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40−
73. (b) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008−2022.
(c) Noyori, R. Adv. Synth. Catal. 2003, 345, 15−32.
To try to gain some insight into the catalyst resting state, the
cyclization of 4a catalyzed by 1b was monitored by NMR
spectroscopy. During the course of the reaction, the 31P NMR
spectrum displays two broad signals around 60 ppm (see
Supporting Information Figure S4).13 Although these signals
cannot be assigned unequivocally at this stage, they fall in the
typical range for 2-indenyl complexes and can be tentatively
attributed to complexes of type I−III. At the end of the
reaction (as deduced from the complete conversion of 4a into
5a in the 1H NMR spectrum), the 31P NMR spectrum shows a
unique sharp signal corresponding to the iodopalladate 1b.
These observations substantiate the noninnocent character of
the indenediide backbone and support its participation in
reversible proton transfer.
In conclusion, indenediide Pd pincer complexes 1a−c stand
as very efficient all-in-one catalysts for the cycloisomerization of
alkynoic acids. They are competent toward a broad range of
alkynoic acids, including functionalized and internal ones, and
give access to 5- as well as 6- and 7-membered lactones with
very high selectivities (in only 1 case over 13, a mixture of 5-
and 6-membered rings was obtained) and in excellent yields
(most often >95%). Protonation or methylation of the ligand
backbone (2-indenyl Pd pincer complexes 2a and 3a,b)
completely shut down the catalytic activity, indicating that
the electron-rich indenediide backbone actively participates in
the transformation.These results extend further the scope of
metal−ligand cooperative catalysis and highlight its versatility
and efficiency. To the best of our knowledge, there are only
very few precedents of cooperative hydrofunctionalization
reactions, and they all deal with intramolecular hydroamination
reactions.23 It is also striking to note that despite the prominent
role of Pd in homogeneous catalysis, Pd complexes have not
been involved in cooperative catalysis until very recently, and
the results described herein represent only the second example
in this area.24
(3) Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem.
Soc. 1986, 108, 7400−7402.
(4) For selected reference, see: (a) Gunanathan, C.; Milstein, D. Acc.
Chem. Res. 2011, 44, 588−602. (b) Langer, R.; Diskin-Posner, Y.;
Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem.,
Int. Ed. 2011, 50, 9948−9952. (c) Balaraman, E.; Gunanathan, C.;
Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609−614.
(d) Langer, R.; Fuchs, I.; Vogt, M.; Balaraman, E.; Diskin-Posner, Y.;
Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Chem.Eur. J. 2013, 19,
3407−3414. (e) Srimani, D.; Ben-David, Y.; Milstein, D. Angew. Chem.,
Int. Ed. 2013, 52, 4012−4015.
(5) (a) Zweifel, T.; Naubron, J.-V.; Buttner, T.; Ott, T.;
̈
Grutzmacher, H. Angew. Chem., Int. Ed. 2008, 47, 3245−3249.
̈
(b) Zweifel, T.; Naubron, J.-V.; Grutzmacher, H. Angew. Chem., Int. Ed.
̈
2009, 48, 559−563. (c) Vogt, M.; de Bruin, B.; Trincado, M.;
Grutzmacher, H. Chem. Sci. 2011, 2, 723−727. (d) Rodríguez-Lugo, R.
̈
E.; Trincado, M.; Vogt, M.; Tewes, F.; Santiso-Quinones, G.;
Grutzmacher, H. Nat. Chem. 2013, 5, 342−347.
̈
(6) (a) Musa, S.; Shaposhnikov, I.; Cohen, S.; Gelman, D. Angew.
Chem., Int. Ed. 2011, 50, 3533−3537. (b) Gelman, D.; Musa, S. ACS
Catal. 2012, 2, 2456−2466.
(7) (a) Kass, M.; Friedrich, A.; Drees, M.; Schneider, S. Angew.
̈
Chem., Int. Ed. 2009, 48, 905−907. (b) Schneider, S.; Meiners, J.;
Askevold, B. Eur. J. Inorg. Chem. 2012, 412−429. (c) Nielsen, M.;
Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.; Gladiali, S.;
Beller, M. Nature 2013, 495, 85−89.
́
(8) (a) Oulie, P.; Nebra, N.; Saffon, N.; Maron, L.; Martin-Vaca, B.;
Bourissou, D. J. Am. Chem. Soc. 2009, 131, 3493−3498. (b) Nebra, N.;
Lisena, J.; Ladeira, S.; Saffon, N.; Maron, L.; Martin-Vaca, B.;
Bourissou, D. Dalton Trans. 2011, 40, 8912−8921.
́
(9) (a) Oulie, P.; Nebra, N.; Ladeira, S.; Martin-Vaca, B.; Bourissou,
D. Organometallics 2011, 30, 6416−6422. (b) For a computational
study of X−H bond activation (X N, P, O, S), see: Nicolas, E.;
́
Martin-Vaca, B.; Mezailles, N.; Bourissou, D.; Maron, L. Eur. J. Inorg.
Chem. 2013, 4068−4076.
(10) (a) Nebra, N.; Saffon, N.; Maron, L.; Martin-Vaca, B.;
Bourissou, D. Inorg. Chem. 2011, 50, 6378−6383. (b) Nebra, N.;
Ladeira, S.; Maron, L.; Martin-Vaca, B.; Bourissou, D. Chem.Eur. J.
2012, 18, 8474−8481.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data of new
compounds. This material is available free of charge via the
■
S
(11) For a general review on catalytic hydrofunctionalization
reactions, see: Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev.
2004, 104, 3079−3160.
(12) (a) Lambert, C.; Utimoto, K.; Nozaki, H. Tetrahedron Lett.
1984, 25, 5323−5326. (b) Wakabayashi, T.; Ishii, Y.; Ishikawa, K.;
Hidai, M. Angew. Chem., Int. Ed. 1996, 35, 2123−2124. (c) Rossi, R.;
Bellina, F.; Mannina, L. Tetrahedron Lett. 1998, 39, 3017−3020.
(d) Rossi, R.; Bellina, F.; Biagetti, M.; Catanese, A.; Mannina, L.
Tetrahedron Lett. 2000, 41, 5281−5286. (e) Wolf, L. B.; Tjen, K. C. M.
F.; ten Brink, H. T.; Blaauw, R. H.; Hiemstra, H.; Schoemaker, H. E.;
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
2933
dx.doi.org/10.1021/cs401029x | ACS Catal. 2013, 3, 2930−2934