ChemComm
Communication
Notes and references
1 J. Raeburn, A. Zamith Cardoso and D. J. Adams, Chem. Soc. Rev., 2013,
42, 5143; J. W. Steed, Chem. Commun., 2011, 47, 1379; M. Zelzer,
S. J. Todd, A. R. Hirst, T. O. McDonald and R. V. Ulijn, Biomater. Sci.,
2013, 1, 11; X. Miao, W. Cao, W. Zheng, J. Wang, X. Zhang, J. Gao,
C. Yang, D. Kong, H. Xu, L. Wang and Z. Yang, Angew. Chem., Int. Ed.,
2013, 125, 7935; X. Zhang, X. Chu, L. Wang, H. Wang, G. Liang,
J. Zhang, J. Long and Z. Yang, Angew. Chem., Int. Ed., 2012, 51, 4388;
W. Zheng, J. Gao, L. Song, C. Chen, D. Guan, Z. Wang, Z. Li, D. Kong
and Z. Yang, J. Am. Chem. Soc., 2013, 135, 266.
2 K. J. Skilling, F. Citossi, T. D. Bradshaw, M. Ashford, B. Kellam and
M. Marlow, Soft Matter, 2014, 10, 237.
3 J. Boekhoven, A. M. Brizard, K. N. K. Kowlgi, G. J. M. Koper,
R. Eelkema and J. H. van Esch, Angew. Chem., Int. Ed., 2010,
49, 4825; J. Boekhoven, J. M. Poolman, C. Maity, F. Li, L. van der
Mee, C. B. Minkenberg, E. Mendes, H. van EschJan and R. Eelkema,
Nat. Chem., 2013, 5, 433; A. Brizard, M. Stuart, K. van Bommel,
A. Friggeri, M. de Jong and J. van Esch, Angew. Chem., Int. Ed., 2008,
47, 2063; S. Debnath, S. Roy and R. V. Ulijn, J. Am. Chem. Soc., 2013,
135, 16789; Y. Fu, B. Li, Z. Huang, Y. Li and Y. Yang, Langmuir, 2013,
29, 6013; D. Higashi, M. Yoshida and M. Yamanaka, Chem. – Asian J.,
2013, 8, 2584; Y. Li, Y. Ding, M. Qin, Y. Cao and W. Wang, Chem.
Commun., 2013, 49, 8653; Y. Li, B. Li, Z. Yan, Z. Xiao, Z. Huang,
K. Hu, S. Wang and Y. Yang, Chem. Mater., 2013, 25, 307; Z. Sun,
Z. Li, Y. He, R. Shen, L. Deng, M. Yang, Y. Liang and Y. Zhang, J. Am.
Chem. Soc., 2013, 135, 13379.
Fig. 4 Pro-gelator and nanofiber solutions inhibit xenografted mouse
breast tumor (4T1-luciferase) growth in vivo (the gel was first diluted in
PBS solution and then administrated into the caudal vein after the tumor
size had reached about 13 mm3, n = 6).
4 S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chem. Rev., 2014,
114, 1973; A. Dasgupta, J. H. Mondal and D. Das, RSC Adv., 2013,
3, 9117; J. A. Foster, M. PiepenbrockMarc-Oliver, G. O. Lloyd,
N. Clarke, A. K. HowardJudith and J. W. Steed, Nat. Chem., 2010,
2, 1037; M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke and
J. W. Steed, Chem. Rev., 2010, 110, 1960; B. Rybtchinski, ACS Nano,
2011, 5, 6791; N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005,
34, 821; D. K. Smith, Chem. Soc. Rev., 2009, 38, 684; D. K. Smith, Nat.
Chem., 2010, 2, 162; C. Tomasini and N. Castellucci, Chem. Soc. Rev.,
2013, 42, 156; H. M. Wang, Z. M. Yang and D. J. Adams, Mater.
Today, 2012, 15, 500.
5 A. G. Cheetham, P. Zhang, Y.-a. Lin, L. L. Lock and H. Cui, J. Am.
Chem. Soc., 2013, 135, 2907.
6 L. Mao, H. Wang, M. Tan, L. Ou, D. Kong and Z. Yang, Chem.
Commun., 2012, 48, 395.
7 C. Yang, D. Li, Q. FengZhao, L. Wang, L. Wang and Z. Yang, Org.
Biomol. Chem., 2013, 11, 6946.
8 M. Hughes, S. Debnath, C. W. Knapp and R. V. Ulijn, Biomater. Sci.,
2013, 1, 1138; S. Marchesan, Y. Qu, L. J. Waddington, C. D. Easton,
V. Glattauer, T. J. Lithgow, K. M. McLean, J. S. Forsythe and
P. G. Hartley, Biomaterials, 2013, 34, 3678.
9 X. Li, J. Li, Y. Gao, Y. Kuang, J. Shi and B. Xu, J. Am. Chem. Soc., 2010,
132, 17707; M. J. Webber, J. B. Matson, V. K. Tamboli and S. I. Stupp,
Biomaterials, 2012, 33, 6823.
10 Y. Gao, F. Zhao, Q. Wang, Y. Zhang and B. Xu, Chem. Soc. Rev., 2010,
39, 3425; E. K. Johnson, D. J. Adams and P. J. Cameron, J. Mater.
Chem., 2011, 21, 2024; R. V. Ulijn and A. M. Smith, Chem. Soc. Rev.,
2008, 37, 664; H. Wang and Z. Yang, Nanoscale, 2012, 4, 5259.
11 H. Wang, J. Wei, C. Yang, H. Zhao, D. Li, Z. Yin and Z. Yang,
Biomaterials, 2012, 33, 5848.
12 C. Yang, M. Bian and Z. Yang, Biomater. Sci., 2014, 2, 651.
13 H. Wang and Z. Yang, Soft Matter, 2012, 8, 2344.
14 R. Lin, A. G. Cheetham, P. Zhang, Y.-a. Lin and H. Cui, Chem.
Commun., 2013, 49, 4968.
15 J. Li, Y. Kuang, Y. Gao, X. Du, J. Shi and B. Xu, J. Am. Chem. Soc., 2013,
135, 542; B. Xing, T. Jiang, W. Bi, Y. Yang, L. Li, M. Ma, C.-K. Chang,
B. Xu and E. K. L. Yeow, Chem. Commun., 2011, 47, 1601.
16 P. Zhang, A. G. Cheetham, Y.-a. Lin and H. Cui, ACS Nano, 2013,
7, 5965.
17 M. Schaffer, P. M. Schaffer, J. Zidan and G. Bar Sela, Curr. Opin. Clin.
Nutr. Metab. Care, 2011, 14, 588.
18 R. Wilken, M. S. Veena, M. B. Wang and E. S. Srivatsan, Mol. Cancer,
2011, 10, 12.
19 S. S. Bansal, M. Goel, F. Aqil, M. V. Vadhanam and R. C. Gupta,
Cancer Prev. Res., 2011, 4, 1158.
pad of female mice). When the volume of breast tumors reached
about 13 mm3, we injected the same dosage (2.5 mg kgꢀ1 of
Cur ꢁ 4 every other day, Cur was dissolved in an excipient
mixture of polyethylene glycol 400, propylene glycol, and
polysorbate 80 (40 : 58 : 2)) of different formulations of Cur into
mice through the caudal vein. As shown in Fig. 4, the solution
of nanofibers exhibited a similar anti-tumor growth efficacy to Cur.
The pro-gelator showed an enhanced anti-tumor growth capacity
over the nanofibers and Cur. The final volume of the tumors was
about 4675, 4518 (*P = 0.0446), 4207 (*P = 0.0233), and 2992%
(***P o 0.0001) higher than the original volume of the tumors
(13 mm3) for the PBS control group, Cur, the nanofibers, and the
pro-gelator, respectively. There was no obvious body weight loss in
the groups of mice administrated with different forms of Cur
(Fig. S9, ESI†), compared to the control group of mice treated
with PBS. These results, in combination with the results giving the
in vitro inhibition capacity to cells, suggest that the pro-gelator is a
more promising candidate than the gelator in nanofibers for
cancer therapy.
In summary, a new hydrogelator based on Cur was reported
in this study. The resulting hydrogel formed by disulfide bond
reduction and could sustainably release the original Cur through
ester bond hydrolysis. Though the cellular uptake of the nano-
fibers of the Cur–peptide conjugate was much higher than that
of solutions of the pro-gelator, the nanofibers possessed a lower
potency to inhibit cancer cells in vitro and in vivo than the
pro-gelator solution. Therefore, the hydrogel might only be
applied for the topical treatment of cancers. The results also
indicate that, in order to achieve better inhibition capacity of Cur
nanofibers on cancer cells, the nanofibers are required to be
responsive to a pH change after endocytosis and must dissociate
into single molecules. Our study provides useful information to
design nano-materials to deliver the anti-cancer drug, curcumin.
This work is supported by NSFC (31271053, 51373079, and
81301311).
20 Y. Cai, Y. Shi, H. Wang, J. Wang, D. Ding, L. Wang and Z. Yang, Anal.
Chem., 2014, 86, 2193.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 9413--9415 | 9415