C O M M U N I C A T I O N S
Table 2. Aza-Henry Reaction of Nitromethane and Nitroethane
with Azomethines Generated from R-Amido Sulfones 1 under
PTCa
Supporting Information Available: Complete experimental pro-
1
13
cedures, H and C spectra, HPLC chromatograms, and stereochemical
assignments. This material is available free of charge via the Internet
at http://pubs.acs.org.
References
(
1) For recent advances on this reaction, see: Westermann, B. Angew. Chem.,
Int. Ed. 2003, 42, 151-153.
(
2) See, for instance: O’Brien, P. H.; Sliskovic, D. R.; Blankley, C. J.; Roth,
B.; Wilson, M. W.; Hamelehle, K. L.; Krause, B. R.; Stanfield, R. L. J.
Med. Chem. 1994, 37, 1810-1822.
(
(
(
3) For a review on 1,2-diamines, see: Lucet, D.; Le Gall, T.; Mioskowski,
entry
compound
R
product
yield (%)b
ee (%)c
C. Angew. Chem., Int. Ed. 1998, 37, 2580-2627.
4) Reviews: (a) Pinnick, H. W. Org. React. 1990, 38, 655-792. (b) Ballini,
R.; Petrini, M. Tetrahedron 2004, 60, 1017-1047.
1
2
3
4
5
6
7
8
9
a
PhCH2CH2
3
83
40
80
68
78
78
75
81
77
79
96e
91
96
90
94
98
97
95
98
91
78
91
d
5) (a) Yamada, K.; Harwood, S. J.; Gr o¨ ger, H.; Shibasaki, M. Angew. Chem.,
Int. Ed. 1999, 38, 3504-3506. (b) Yamada, K.; Moll, G.; Shibasaki, M.
Synlett 2001, 980-982. (c) Knudsen, K. R.; Risgaard, T.; Nishiwaki, N.;
Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 2001, 123, 5843-
b
CH3CH2
3
d
c
d
e
f
g
h
CH3CH2CH2
CH3(CH2)4 CH2
(CH3) 2CHCH2
(CH3) 2CH
c-C6H11
3
3
3
3
3
3
5844. (d) Nishiwaki, N.; Knudsen, K. R.; Gothelf, K. V.; Jørgensen, K.
A. Angew. Chem., Int. Ed. 2001, 40, 2992-2995. (e) Knudsen, K. R.;
Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362-1364. (f) Anderson,
J. C.; Howell, G. P.; Lawrence, R. M.; Wilson, C. S. J. Org. Chem. 2005,
70, 5665-5670. (g) Palomo, C.; Oiarbide, M.; Halder, R.; Laso, A.; L o´ pez,
R. Angew. Chem., Int. Ed. 2005, 44, in press; DOI: 10.1002/
anie.200502674.
10
11
12
13
14
15
16
17
18
19
20
21
Ph
d
80
(
6) (a) Nugent, B. M.; Poder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004,
i
j
k
l
m
n
a
h
i
4-MeOC6H4
4-ClC6H4
4-F3CC6H4
3-NO2C6H4
1-naphthyl
2-furyl
PhCH2CH2
Ph
4-MeOC6H4
4-ClC6H4
3
3
3
3
3
82
79
80
72
81
72
85
88
87
88
1
26, 3418-3419. (b) Okino, T.; Nakamura, S.; Furukawa, T.; Takemoto,
80 (96)
82 (90)
83 (90)
90 (94)
Y. Org. Lett. 2004, 6, 625-627. (c) Yoon, T. P.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2005, 44, 466-468.
(
(
7) For one exception using preformed silylnitronates, see ref 5f.
8) (a) Palomo, C.; Oiarbide, M.; Gonz a´ lez-Rego, M. C.; Sharma, A. K.;
Garc ´ı a, J. M.; Gonz a´ lez, A.; Landa, C.; Linden, A. Angew. Chem., Int.
Ed. 2000, 39, 1063-1065. (b) Palomo, C.; Oiarbide, M.; Landa, A.;
Gonz a´ lez-Rego, M. C.; Garc ´ı a, J. M.; Gonz a´ lez, A.; Odriozola, J. M.;
Mart ´ı n-Pastor, M.; Linden, A. J. Am. Chem. Soc. 2002, 124, 8637-8643.
f
3
84
g
11
11
11
11
91 (90:10)
94 (93:7)g
g
(9) Chiral R-amido sulfones as azomethine precursors in aza-Henry pro-
cesses: (a) Ballini, R.; Petrini, M. Tetrahedron Lett. 1999, 64, 8970-
90 (95:5)
98 (75:25)g
j
8
972. (b) Foresti, E.; Palmieri, G.; Petrini, M.; Profeta, R. Org. Biomol.
Chem. 2003, 1, 4275-4281. (c) Giri, N.; Petrini, M.; Profeta, R. J. Org.
a
Reactions conducted at 0.5 mmol scale in dry toluene (1.5 mL) using
Chem. 2004, 69, 7303-7308.
b
1
:CH3NO2:5:CsOH‚H2O in a 1:5:0.12:1.3 molar ratio. Isolated yields after
(10) Aromatic N-acyl imines can be obtained as isolable, relatively stable
compounds upon treatment with stoichiometric potassium carbonate.
See: (a) ref 6a,c. (b) Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J.
Org. Chem. 1994, 59, 1238-1240. (c) Wenzel, A. G.; Jacobsen, E. N. J.
Am. Chem. Soc. 2002, 124, 12964-12965.
c
column chromatography. Determined by HPLC (see the SI for details).
The number in parentheses refers to the product after a single crystallization
from hexane. With cat 6 (conversions). 89% ee at -20 °C. f Oil. g Ratio
d
e
of syn/anti diastereomers in parentheses.
(
11) Ballini, R.; Petrini, M. Tetrahedron Lett. 1999, 40, 4449-4452.
12) For recent reviews, see: (a) Maruoka, K.; Ooi, T. Chem. ReV. 2003, 103,
3013-3028. (b) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506-517.
(
significantly lower efficiency (conversions typically <10%). This
(
c) Lygo, B.; Andrews, P. I. Acc. Chem. Res. 2004, 37, 518-525. (d)
17
result contrasts with previous observations and suggests that the
present catalysts exhibit dual functions;18 eventually, a hydrogen
bond may be formed between the hydroxyl group and the nitro
group’s oxygen, facilitating nitronate formation, and/or between
the hydroxyl and the azomethine’s nitrogen, activating the elec-
trophile and rigidifying transition structure.
The potential of this catalytic approach is further demonstrated
by the reaction of azomethine precursors 1a,h-j with nitroethane
to afford adducts 11a,h-j in syn:anti relationships up to 95:5 and
enantiomeric excesses in the range of 90-98% for the major syn
diastereomer. Finally, most products are crystalline, and essentially,
Ooi, T.; Maruoka, K. Acc. Chem. Res. 2004, 37, 526-533.
(13) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414-
2415.
1
(
14) For further information, see: Kacprzak, K.; Gawronski, J. Synthesis 2001,
961-998.
15) For 3a: 48% ee in toluene (90% conv.); 18% ee in trifluoromethylbenzene
(
(
60% conv.). The selectivity could be improved up to 70% ee in a 1:1
mixture of toluene and dichloromethane.
(
16) (a) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126,
9
906-9907. (b) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.;
Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105-108. (c)
Lou, S.; Taoka, B. M.; Jing, A.; Schaus, S. E. J. Am. Chem. Soc. 2005,
1
27, 11256-11257 and references therein.
(17) O-alkylation of cinchone derivatives has proven to provide more efficient
catalysts for PTC: (a) ref 12. (b) ref 13. (c) Corey, E. J.; Noe, M. C.; Xu,
F. Tetrahedron Lett. 1998, 39, 5347-5350. (d) Corey, E. J.; Zhang, F.-
Y. Org. Lett. 2000, 2, 4257-4259. (e) Corey, E. J.; Zhang, F.-Y. Angew.
Chem., Int. Ed. 1999, 38, 1931-1934.
18) Other examples that support this assumption: (a) Nerinckx, W.; Vande-
walle, M. Tetrahedron: Asymmetry 1990, 1, 265-276. (b) Perrad, T.;
Plaquevent, J.-C.; Desmurs, J.-R.; H e´ brault, D. Org. Lett. 2000, 2, 2959-
enantiopure compounds can be obtained by direct crystallization
of the crude nitroamines.19
(
In conclusion, a catalytic, highly enantioselective aza-Henry
methodology is described, which works under PTC conditions. As
salient features, the new method involves readily available R-amido
sulfone substrates20 and commercial catalysts, making it easily
scalable. Most important, it is the first protocol amenable to
enolizable aldehyde-derived azomethine substrates, thus consider-
ably expanding the potential of the aza-Henry reaction in synthesis.
2
962. (c) Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K. J. Am. Chem.
Soc. 2004, 126, 6844-6845. (d) Ooi, T.; Ohara, D.; Fukumoto, K.;
Maruoka, K. Org. Lett. 2005, 7, 3195-3197.
19) For assignment of the configuration of adducts 3 and 11, see the Supporting
Information.
(
(20) For representative transformations eventually amenable for PTC, see the
following. Alkinyl-metal additions: (a) Mecozzi, T.; Petrini, M. J. Org.
Chem. 1999, 64, 8970-8972. Mannich reaction: (b) Nejman, M.;
Sliwi n´ ska, Zwierzak, A. Tetrahedron 2005, 61, 8536-8541. (c) Schunk,
S.; Enders, D. Org. Lett. 2001, 3, 3177-3180. (d) Enders, D.; Oberb o¨ rsch,
S. Synlett 2002 471-473. Strecker reaction: (e) Banphavichit, V.;
Chaleawlertumpon, S.; Bhanthummavin, Vilaivan, T. Synth. Commun.
Acknowledgment. This work was financially supported by The
University of the Basque Country (UPV/EHU), and Ministerio de
Educaci o´ n y Ciencia (MEC, Spain). A Ram o´ n y Cajal contract to
R.L. and a predoctoral grant to A.L., both from MEC, are
acknowledged.
2004, 34, 3147-3160.
JA056594T
J. AM. CHEM. SOC.
9
VOL. 127, NO. 50, 2005 17623