Organic Letters
Letter
(7) (a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119,
11108−11109. (b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc.
1997, 119, 12382−12383. (c) Culkin, D. A.; Hartwig, J. F. Acc. Chem.
Res. 2003, 36, 234−245. (d) Huang, Z.; Hartwig, J. F. Angew. Chem.,
Int. Ed. 2012, 51, 1028−1032. (e) Hama, T.; Ge, S.; Hartwig, J. F. J.
Org. Chem. 2013, 78, 8250−8266.
(8) Kuwajima, I.; Urabe, H. J. Am. Chem. Soc. 1982, 104, 6831−6833.
(9) (a) Su, W.; Raders, S.; Verkade, J. G.; Liao, X.; Hartwig, J. F.
Angew. Chem., Int. Ed. 2006, 45, 5852−5855. (b) Iwama, T.; Rawal, V.
H. Org. Lett. 2006, 8, 5725−5728. (c) Liu, X.; Hartwig, J. F. J. Am.
Chem. Soc. 2004, 126, 5182−5191.
38) albeit in low yields (entries 2, 3, 4). Attempts to use
stronger acids gave mixed results: p-TsOH in toluene/H2O
failed, probably due to solubility problems (entry 5). Strong
acids such as HCl or TFA led to decomposition (entries 6, 7).
Finally, 80% aqueous formic acid which is 1 pKA stronger than
acetic acid, at 65 °C was found optimal to produce the desired
naphthoate in 88% yield (entry 8). Knoevenagel-type
conditions (entry 1) gave decomposition of starting material.
In summary, we have developed an efficient one-step
synthesis of γ-aryl-β-ketoesters from aryl bromides and
bis(trimethylsilyl) enol ethers. Catalytic amounts of Pd-
(dba)2/Pt-Bu3 and stoichiometric amounts of Bu3SnF were
optimal conditions for this novel Hauser−Heck combination.
Scope and limitations of the new method have been described
for a series of aromatic and heteroaromatic examples. γ-Aryl-β-
ketoesters with a 1,3-dioxane acetal in the ortho position can be
converted efficiently into substituted naphthalenes using
aqueous formic acid at 65 °C. This straightforward synthesis
yields substituted naphthalenes as promising building blocks for
the synthesis of oligoacenes.
(10) Chan, T. H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102,
3534−3538. For reactions of Bis(trimethylsilyl) enol ethers with
dielectrophiles: Feist, H.; Langer, P. Synthesis 2007, 2007, 327−347.
(11) (a) Schwaben, J.; Munster, N.; Klues, M.; Breuer, T.; Hofmann,
̈
P.; Harms, K.; Witte, G.; Koert, U. Chem. - Eur. J. 2015, 21, 13758−
13771. (b) Podeschwa, M. A.; Rossen, K. Org. Process Res. Dev. 2015,
ASAP.
(12) Barker, D.; Lehmann, A. L.; Mai, A.; Khan, G. S.; Ng, E.
Tetrahedron Lett. 2008, 49, 1660−1664. Compound 22 is accessible
from the corresponding acid by borane reduction and subsequent
THP protection.
(13) Newman, M. S.; Harper, R. J. J. Am. Chem. Soc. 1958, 80, 6350−
6355.
(14) (a) Matter, H.; Zoller, G.; Herling, A. W.; Sanchez-Arias, J. A.;
Philippo, C.; Namane, C.; Kohlmann, M.; Pfenninger, A.; Voss, M. D.
Bioorg. Med. Chem. Lett. 2013, 23, 1817−1822. (b) Wuts, P. G. M.;
Greene, T. W. Greene’s Protective Groups in Organic Synthesis, 4th ed.;
Wiley: Hoboken, New Jersey, 2007; pp 448−466.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Crystallographic data for 27, 38, and 39 (CIF)
Experimental details; spectroscopic and analytical data
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support by the Deutsche Forschungsgemeinschaft
(DFG, SFB 1083) and Fonds der Chemischen Industrie is
gratefully acknowledged.
REFERENCES
■
(1) (a) Matsubara, T.; Takahashi, K.; Ishihara, J.; Hatakeyama, S.
Angew. Chem., Int. Ed. 2014, 53, 757−760. (b) Tambar, U. K.; Ebner,
D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128, 11752−11753.
(2) (a) Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.;
Zhang, X. Angew. Chem., Int. Ed. 2011, 50, 7304−7307. (b) Allan, K.
M.; Hong, B. D.; Stoltz, B. M. Org. Biomol. Chem. 2009, 7, 4960−4964.
(c) Houghton, R. P.; Lapham, D. J. Synthesis 1982, 1982, 451−452.
(d) Oikawa, Y.; Sugano, K.; Yonemitsu, O. J. Org. Chem. 1978, 43,
2087−2088.
(3) For the rare case of an arylation of β-diketone dicarbanions with
diaryliodonium chlorides: Hampton, K. G.; Harris, T. M.; Hauser, C.
R. J. Org. Chem. 1964, 29, 3511−3513.
(4) (a) Hauser, C. R.; Harris, T. M. J. Am. Chem. Soc. 1958, 80,
6360−6361. (b) Hampton, K. G.; Hauser, C. R. J. Org. Chem. 1965,
30, 2934. (c) Wolfe, J. F.; Harris, T. M.; Hauser, C. R. J. Org. Chem.
1964, 29, 3249−3252.
(5) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev.
2000, 100, 1929−1972.
(6) (a) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320−2322.
(b) Heck, R. F. Org. React. 1982, 27, 345−390. (c) Jeffery, T.
Tetrahedron Lett. 1992, 33, 1989−1992.
D
Org. Lett. XXXX, XXX, XXX−XXX