M. Adib et al. / Tetrahedron Letters 52 (2011) 3191–3194
3193
Table 1 (continued)
Entry
ArCH2X
2-Aminopyridine
R
Yielda (%)
90
Mp (°C)
Br
14
15
16
17
18
198–20016h
N
N
N
N
NH2
NH2
NH2
NH2
NH2
Br
O2N
95
94
91
96
235–237
166–169
15416e
Br
H3C
Br
CH3O
OTs
OTs
198–20016h
N
H3C
19
20
94
95
216–219 (dec)15
166–169
N
NH2
OTs
H3C
N
NH2
a
Isolated yield.
2. Couty, F.; Evano, G. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.,
Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier Science: Oxford,
2008. Vol 11, Chapter 10, 409–492, and references therein..
3. Roubaud, C.; Vanelle, P.; Maldonado, J.; Crozet, M. P. Tetrahedron 1995, 51,
9643–9656.
4. Kiselyov, A. Tetrahedron Lett. 2005, 46, 4487–4490.
5. Bristow, N. W.; Charlton, P. T.; Peak, D. A.; Short, W. F. J. Chem. Soc. 1954, 616–
629.
the in situ prepared aldehyde was condensed with the 2-amino-
pyridine 2 followed by treatment with isocyanide 3 at 90 °C to pro-
duce
the
corresponding
3-alkylamino-2-arylimidazo[1,2-
a]pyridine 4 in 88–96% yields (Table 1). All the reactions went to
completion within 6 h.23 1H NMR analysis of the reaction mixtures
clearly indicated the formation of the corresponding 3-aminoimi-
dazo[1,2-a]pyridines 4 in excellent yields. All the products were
characterized by melting point determination and from 1H and
13C NMR spectral data.
6. Katritzky, A. R.; Xu, Y. J.; Tu, H. B. J. Org. Chem. 2003, 68, 4935–4937.
7. (a) Dömling, A. Chem. Rev. 2006, 106, 17–89; (b) Dömling, A.; Ugi, I. Angew.
Chem., Int. Ed. 2000, 39, 3168–3210.
8. Ugi, I.; Meyr, R. Chem. Ber. 1961, 94, 2229–2233.
Simple alkyl halides or alkyl tosylates were oxidized to the cor-
responding aldehydes in good yields, but these aldehydes, when
treated with 2-aminopyridines and isocyanides resulted in compli-
cated reaction mixtures.
9. Blackburn, C. Tetrahedron Lett. 1998, 39, 5469–5472.
10. Bienaymé, H.; Bouzid, K. Angew. Chem., Int. Ed. 1998, 37, 2234–2237.
11. Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661–663.
12. Varma, R. S.; Kumar, D. Tetrahedron Lett. 1999, 40, 7665–7669.
13. Ireland, S. M.; Tye, H.; Whittaker, M. Tetrahedron Lett. 2003, 44, 4369–4371.
14. Parchinsky, V. Z.; Shuvalova, O.; Ushakova, O.; Kravchenko, D. V.; Krasavin, M.
Tetrahedron Lett. 2006, 47, 947–951.
15. Shaabani, A.; Soleimani, E.; Maleki, A. Tetrahedron Lett. 2006, 47, 3031–3034.
16. (a) Odell, L. R.; Nilsson, M. T.; Gising, J.; Lagerlund, O.; Muthas, D.; Nordqvist,
A.; Karlen, A.; Larhed, M. Bioorg. Med. Chem. Lett. 2009, 19, 4790–4793; (b)
Pirrung, M. C.; Ghorai, S.; Ibarra-Rivera, T. R. J. Org. Chem. 2009, 74, 4110–4117;
(c) Guchhait, S. K.; Madaan, C. Synlett 2009, 628–632; (d) Nayak, M.; Batra, S.;
Kanojiya, S. Synthesis 2009, 431–437; (e) Shaabani, A.; Soleimani, E.; Maleki, A.;
Moghimi-Rad, J. Synth. Commun. 2008, 38, 1090–1095; (f) Mert-Balci, F.;
Conrad, J.; Beifuss, U.; Meindl, K.; Schulz, T.; Stalke, D. Synthesis 2008, 3649–
3656; (g) Rousseau, A. L.; Matlaba, P.; Parkinson, C. J. Tetrahedron Lett. 2007, 48,
4079–4082; (h) Shaabani, A.; Maleki, A.; Moghimi Rad, J.; Soleimani, E. Chem.
Pharm. Bull. 2007, 55, 957–958; (i) Nenajdenko, V. G.; Reznichenko, A. L.;
Balenkova, E. S. Russ. Chem. Bull. 2007, 56, 560–562.
A mechanistic rationalization for this reaction is provided in
Scheme 1. Treatment of the benzylic substrate 1 with dimethyl
sulfoxide yields an alkoxysulfonium ion 5 which, in the presence
of K2CO3 undergoes elimination of dimethyl sulfide to form the
corresponding aldehyde 6. Next, the aldehyde undergoes conden-
sation with the 2-aminopyridine 2 to give the imine intermediate
7. This imine undergoes nucleophilic addition with the isocyanide
3 to form the isonitrilium intermediate 8, which cyclizes into the
imino intermediate 9. This intermediate tautomerizes under the
reaction conditions to afford the 3-alkylamino-2-arylimidazo[1,2-
a]pyridine 4.
17. (a) Adib, M.; Sheikhi, E.; Kavoosi, A.; Bijanzadeh, H. R. Tetrahedron 2010, 66,
9263–9269; (b) Adib, M.; Ansari, S.; Fatemi, S.; Bijanzadeh, H. R.; Zhu, L. G.
Tetrahedron 2010, 66, 2723–2727; (c) Adib, M.; Ansari, S.; Mohammadi, A.;
Bijanzadeh, H. R. Tetrahedron Lett. 2010, 51, 30–32; (d) Adib, M.; Mahdavi, M.;
Ansari, S.; Malihi, F.; Zhu, L. G.; Bijanzadeh, H. R. Tetrahedron Lett. 2009, 50,
7246–7248; (e) Adib, M.; Sheibani, E.; Zhu, L. G.; Bijanzadeh, H. R. Tetrahedron
Lett. 2009, 50, 4420–4422; (f) Adib, M.; Sheibani, E.; Bijanzadeh, H. R.; Zhu, L. G.
Tetrahedron 2008, 64, 10681–10686; (g) Adib, M.; Sayahi, M. H.; Ziyadi, H.; Zhu,
L. G.; Bijanzadeh, H. R. Synthesis 2008, 3289–3294; (h) Adib, M.; Mohammadi,
B.; Bijanzadeh, H. R. Synlett 2008, 3180–3182; (i) Adib, M.; Mohammadi, B.;
Bijanzadeh, H. R. Synlett 2008, 177–180; (j) Adib, M.; Sayahi, M. H.; Ziyadi, H.;
Bijanzadeh, H. R.; Zhu, L. G. Tetrahedron 2007, 63, 11135–11140.
18. Adib, M.; Mohamadi, A.; Sheikhi, E.; Ansari, S.; Bijanzadeh, H. R. Synlett 2010,
1606–1608.
In conclusion, we have developed a new and straightforward
approach for the synthesis of imidazo[1,2-a]pyridines via a one-
pot, three-component condensation reaction between 2-amino-
pyridines, benzyl halides or benzyl tosylates and isocyanides. The
use of benzylic substrates in place of aldehydes and the excellent
yields of the products are the main advantages of this reaction.
Acknowledgment
This research was supported by the Research Council of the Uni-
versity of Tehran as research project (6102036/1/03).
19. Adib, M. E.; Sheibani, E.; Zhu, L. G.; Mirzaei, P. Tetrahedron Lett. 2008, 49, 5108–
5110.
20. Adib, M.; Mahdavi, M.; Alizadeh Noghani, M.; Mirzaei, P. Tetrahedron Lett. 2007,
48, 7263–7265.
References and notes
21. Adib, M.; Mahdavi, M.; Abbasi, A.; Haghighat Jahromi, A.; Bijanzadeh, H. R.
Tetrahedron Lett. 2007, 48, 3217–3220.
22. (a) Kornblum, N.; Jones, W. J.; Anderson, G. J. J. Am. Chem. Soc. 1959, 81, 4113–
4114; (b) Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H.
1. Howard, A. S. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees,
C. W., Scriven, E. V. F., Eds.; Pergamon Press: London, 1996. Vol. 8, Chapter 10,
pp 262–274, and references therein..