acetylenic alcohol A, which differ only in the number of
The synthesis of fragment A (Scheme 4) started with
carbons in the chain (Scheme 3).
alkylation of the lithium derivative of propargylic alcohol
1
0
with 1-bromobutane or 1-bromohexane, yielding the cor-
responding alcohols 9 in 83% and 89% yields. These
compounds were then subjected to prototropic migration of
Scheme 3
1
1
triple bond with KAPA to afford the desired terminal
acetylenic alcohols (fragment A) in 87 and 85% yields.
Subsequent coupling reaction of fragments A and B using
8
CuI and pyrrolidine yielded 10 in 90% and 93%. Oxidation
1
2
with chromium oxide/H
2
SO
4
afforded the desired acids 1
and 2 in 58% and 60% yields, respectively. The overall yield
of the sequence was 30% (1) and 34% (2).
The retrosynthetic analysis of polyacetylenic acids 3 and
4
afforded two fragments: vinylic telluride C and 1,3-
alkylidyine system D (Scheme 5).
The alkyldiynes B were synthesized according to Scheme
4. The appropriate terminal acetylene (n ) 3 or 4) was
Scheme 5
Scheme 4a
The fragment D was synthesized following the sequence
shown in Scheme 6, by the same procedure used for the
synthesis of compound 8 (Scheme 4). The overall yields of
fragment D were 40% and 43%.
Further, we synthesized fragment C (Scheme 6) by
1
3
hydrotelluration of the appropriate alkyne. The desired
(
(
(
10) Cossy, J.; Pete, J. P. Tetrahedron Lett. 1986, 27, 573.
11) Abrams, S. R. Can. J. Chem. 1984, 62, 1333.
12) Heilbron, I.; Jones, E. R. H.; Sondheimer, F. J. Chem. Soc. 1949,
6
04.
13) Zeni, G.; Formiga, H. B.; Comasseto, J. V. Tetrahedron Lett. 2000,
41, 1311.
(14) Zeni, G.; Comasseto, J. V. Tetrahedron Lett. 1999, 40, 4619.
a
(
i) n-BuLi, THF/I
2
; (ii) pyrrolidine, CuI; (iii) NaOH, xylene,
; (v)2 equiv of n-BuLi, THF/HMPA;
; (vii) pyrrolidine, CuI; (viii) CrO /H SO , -10
(
reflux; (iv) n-BuLi, THF/I
vi) KNH(CH NH
C.
2
(
°
)
2 3
2
3
2
4
1
(
15) Compound 1. H NMR (400 MHz, CD3OD) δ 0.95 (3 H, t, J ) 7.1
Hz); 1.43 (2 H, sex, J ) 7.5 Hz); 1.54 (2 H, quint, J ) 7.5 Hz); 1.58 (2 H,
quint, J ) 7.6 Hz); 1.70 (2 H, quint, J ) 7.5 Hz); 2.30 (2 H, t, J ) 7.5 Hz);
13
2
1
.33 (2 H, quint, J ) 6.9 Hz). C NMR (100 MHz, CDCl3) δ 13.30; 18.92;
9.25; 22.00; 24.10; 27.80; 30.20; 60.50; 60.90; 65.83; 66.42; 78.50; 79.83.
converted into the 1-iodoacetylene 5 by treatment with
1
MS m/z (%): 230 (55), 128 (100), 91 (50), 41 (32). Compound 2. H NMR
(400 MHz, CD3OD) δ 0.90 (3 H, t, J ) 7.3 Hz); 1.40 (2 H, quint, J ) 7.5
Hz); 1.41 (2 H, quint, J ) 7.5 Hz); 1.43 (2 H, sex, J ) 7.3 Hz); 1.47 (2 H,
quint, J ) 7.5 Hz); 1.52 (2 H, quint, J ) 7.3 Hz); 1.66 (2 H, quint, J ) 7.3
Hz); 2.23 (2 H, t, J ) 7.3 Hz); 2.28 (2 H, t, J ) 7.3 Hz); 2.30 (2 H, t, J )
7
n-BuLi/iodine in 78% (n ) 3) and 82% (n ) 4) yields.
Coupling reaction of 5 with 6 in the presence of pyrrolidine/
8
CuI yielded 7 in 95% and 93% yields, respectively, which
9
7.3 Hz); 13C NMR (100 MHz, CDCl ) δ 13.60; 19.25; 19.40; 22.10; 28.15;
by treatment with NaOH in xylene under reflux afforded
3
2
8.75; 28.83; 29.80; 30.23; 60.40; 60.50; 65.83; 65.95; 79.20; 79.40; MS
the diynes 8 in 70% and 73% yields. Compounds 8 were
then transformed into the corresponding fragment B by using
again n-BuLi/I in 85% and 87% yields, respectively.
2
1
m/z (%): 272 (20), 230 (8), 129 (100), 41 (70). Compound 3. H NMR
(400 MHz, CD3OD) δ 0.93 (3 H, t, J ) 7.2 Hz); 1.36 (2 H, sex, J ) 7.3
Hz); 1.39 (2 H, quint, J ) 7.5 Hz); 1.55 (2 H, quint, J ) 7.3 Hz); 1.63 (2
H, quint, J ) 7.6 Hz); 2.29 (2 H, t, J ) 7.3 Hz); 2.35 (2 H, td, J ) 7.0; 0.7
1
3
Hz); 5.48(1 H, dt, J ) 10.7; 1.1 Hz); 6.07 (1 H, dt, J ) 10.7; 7.5 Hz).
C
(
3) Dirsch, V.; Neszm e´ lyi, A.; Wagner, H. Pharm. Pharmacol. Lett. 1982,
NMR (100 MHz, CDCl3) δ 13.90; 19.55; 22.30; 24.35; 28.00; 28.43; 30.45;
2
, 184.
31.30; 34.05; 65.54; 72.30; 78.24; 84.38; 108.14; 147.81. MS m/z (%): 246
1
(
4) Redl, K.; Breu, W.; Davis, B.; Bauer, R. Planta Med. 1994, 60, 58.
(8), 146 (30), 129 (50), 117 (100), 91 (68). Compound 4. H NMR (400
(5) Morita, M.; Sato, S.; Yanagisawa, T.; Mihasi, H. Japanese Patent JP
MHz, CD3OD) δ 0.93 (3 H, t, J ) 7.2 Hz); 1.31 (2 H, quint, J ) 7.3 Hz);
1.35 (2 H, quint, J ) 7.3 Hz); 1.37 (2 H, sex, J ) 7.5 Hz); 1.39 (2 H,
quint, J ) 7.5 Hz); 1.42 (2 H, quint, J ) 7.4 Hz); 1.42 (2 H, quint, J ) 7.5
Hz); 1.61 (2 H, quint, J ) 7.3 Hz); 2.28 (2 H, t, J ) 7.4 Hz); 2.31 (2 H,
td, J ) 7.4; 0.6 Hz); 2.34 (2 H, qd, J ) 6.9; 1.2 Hz); 5.42 (1 H, dt, J )
10.9; 1.2 Hz); 6.07 (1 H, dt, J ) 10.9; 7.6 Hz). C NMR (100 MHz, CDCl3)
δ 14.02; 19.75; 22.36; 24.87; 28.39; 28.71; 28.88; 29.06; 30.05; 31.00;
65.34; 72.22; 78.29; 84.71; 108.26; 147.95. MS m/z (%): 271 (10), 245
(6), 187 (30), 164 (27), 117 (100), 91 (65).
0
3017043 A2, 1991; Chem. Abstr. 1991, 115, 142236.
6) Stefani, H. A.; Costa, I. M.; Zeni, G. Tetrahedron Lett. 1999, 40,
215.
7) Brandsma, L. In PreparatiVe Acetylenic Chemistry; Elsevier: Am-
sterdam, 1988.
(
9
(
13
(
(
8) Alami, M.; Ferri, F. Tetrahedron Lett. 1996, 37, 2763.
9) Shostakovskii, N.; Bogdanova, A. V. In The Chemistry of Diacety-
lenes; John Wiley & Sons: New York, 1974.
820
Org. Lett., Vol. 3, No. 6, 2001