D
E. A. Mensah et al.
Letter
Synlett
Table 1 Control Experiment with 4-Bromobenzaldehyde as a Model
(6) Ranu, B. C.; Jana, R.; Samanta, S. Adv. Synth. Catal. 2004, 346,
446.
Substratea
(7) Gregg, B. T.; Golden, K. C.; Quinn, J. F. Tetrahedron 2008, 64,
3287.
(8) Smith, B. M.; Graham, A. E. Tetrahedron Lett. 2006, 47, 9317.
(9) Smith, B. M.; Graham, A. E. Tetrahedron Lett. 2007, 48, 4891.
(10) Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. Synlett 1996,
839.
O
O
O
O
Catalyst
rt
H
+
H
O
O
Br
Br
(1 equiv)
(3 equiv)
1
(11) Leonard, N. M.; Oswald, M. C.; Freiberg, D. A.; Nattier, B. A.;
Smith, R. C.; Mohan, R. S. J. Org. Chem. 2002, 67, 5202.
(12) Smith, A. B. III.; Fukui, M.; Vaccaro, H. A.; Empfield, J. R. J. Am.
Chem. Soc. 1991, 113, 2071.
(13) Gemal, A. L.; Luche, J.-L. J. Org. Chem. 1979, 44, 4187.
(14) Hamada, N.; Kazahaya, K.; Shimizu, H.; Sato, T. Synlett 2004,
1074.
(15) Clerici, A.; Pastori, N.; Porta, O. Tetrahedron 1998, 54, 15679.
(16) Banik, B. K.; Chapa, M.; Marquez, J.; Cardona, M. Tetrahedron
Lett. 2005, 46, 2341.
(17) Kumar, R.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46, 8319.
(18) Kotke, M.; Schreiner, P. R. Tetrahedron 2006, 62, 434.
(19) Lee, S. H.; Lee, J. H.; Yoon, C. M. Tetrahedron Lett. 2002, 43, 2699.
(20) Babak, K.; Miri, A. A. Chem. Lett. 1999, 1199.
(21) Bornstein, J.; Bedell, S. F.; Drummond, P. E.; Kopsloski, C. L.
J. Am. Chem. Soc. 1956, 78, 83.
(22) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synlett 1999, 321.
(23) De S, K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 8141.
(24) Velusamy, S.; Punniyamurthy, T. Tetrahedron Lett. 2004, 45,
4917.
(25) Gopinath, R.; Hasque, S. J.; Patel, B. K. J. Org. Chem. 2002, 67,
5842.
(26) Procuranti, B.; Connon, S. J. Org. Lett. 2008, 10, 4935.
(27) Yang, J.; Cooper-Vanosdell, C.; Mensah, E. A.; Nguyen, H. M.
J. Org. Chem. 2008, 73, 794.
(28) Mensah, E. A.; Azzarelli, J. M.; Nguyen, H. M. J. Org. Chem. 2009,
74, 1650.
Entry Catalyst
Loading
Additive Time
Yielda (%)
1
2
3
4
5
–
–
–
5 h
5 h
5 h
< 1
< 1
< 5
97
Pd(PhCN)2Cl2
AgOTf
0.5 mol%
1.0 mol%
0.5 mol%
0.5 mol%
–
–
b
b
Pd(PhCN)2(OTf)2
Pd(PhCN)2(OTf)2
–
15 min
20 min
Hg(0)
93
a Isolated yield.
b Pd(PhCN)2(OTf)2 was generated in situ from Pd(PhCN)2Cl2 (0.5 equiv) and
AgOTf (1 equiv) in dried CH2Cl2 (0.0125 M).
There are numerous recent reports on the use of Pd(0)
or palladium nanoparticles (Pd-NPs) as catalysts in C–C
bond-forming reactions.39–42 To ensure that the origin of the
observed catalysis was not due to Pd(0) or to Pd-NPs, we
conducted another control experiment in the presence of
mercury (the mercury drop test). In this case, the reaction
still proceeded smoothly to afford the corresponding di-
methyl acetal 1 in excellent yield (Table 1, entry 5). This re-
sult suggests that the observed acetalization reaction in-
volves neither Pd(0) nor Pd-NPs.
In summary, a new method has been developed for
masking carbonyl compounds as their corresponding dial-
kyl acetals through catalysis with a cationic palladium(II)
species.43 This method is mild, versatile, and highly efficient
and it requires low catalyst loading at room temperature.
(29) Zhang, X.; Han, X.; Chen, J.; Lu, X. Tetrahedron 2017, 73, 1541.
(30) Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. Beilstein J.
Org. Chem. 2016, 12, 1040.
(31) Mensah, E. A.; Reyes, F. R.; Standiford, E. S. Catalysts 2016, 6, 27.
(32) Yi, H.; Niu, L.; Wang, S.; Liu, T.; Singh, A. K.; Lei, A. Org. Lett.
2017, 19, 122.
Acknowledgment
(33) Yu, X.; Ye, S.; Wu, J. Adv. Synth. Catal. 2010, 352, 2050.
(34) Briones, J. F.; Davies, H. M. L. Org. Lett. 2011, 13, 3984.
(35) Jiang, L.; Yu, X.; Fang, B.; Wu, J. Org. Biomol. Chem. 2012, 10,
8102.
(36) Das, R.; Chakraborty, D. Synthesis 2011, 1621.
(37) Rao, V. K.; Rao, M. S.; Jain, N.; Panwar, J.; Kumar, A. Org. Med.
Chem. Lett. 2011, 1, 10.
(38) Zheng, D.; Li, S.; Wu, J. Org. Lett. 2012, 14, 2655.
(39) Pérez-Lorenzo, M. J. Phys. Chem. Lett. 2012, 3, 167.
(40) Sawai, K.; Tatumi, R.; Nakahodo, T.; Fujihara, H. Angew. Chem.
Int. Ed. 2008, 47, 6917.
We gratefully acknowledge the financial support of Indiana Universi-
ty Southeast. This research is also supported by Indiana University
Southeast Research Support Program and the Indiana University
Southeast Large Grant Program.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
(41) Sawoo, S.; Srimani, D.; Dutta, P.; Lahiri, R.; Sarkar, A. Tetrahe-
dron 2009, 65, 4367.
References and Notes
(42) Lu, F.; Ruiz, J.; Astruc, D. Tetrahedron Lett. 2004, 45, 9443.
(43) 4-Bromobenzaldehyde Dimethyl Acetal (1); Typical Procedure
An oven-dried, argon-flushed, 10 mL round-bottomed flask was
charged with 4-bromobenzaldehyde (92.5 mg, 0.5 mmol, 1.0
equiv) and HC(OMe)3 (0.16 mL, 1.5 mmol, 3.0 equiv). To this
mixture was added a preformed solution of Pd(PhCN)2(OTf)2
(0.2 mL, 0.0025 mmol, 0.5 mol%), generated in situ from
Pd(PhCN)2Cl2 (0.96 mg, 0.0025 mmol, 0.5 mol%) and AgOTf
(1.29 mg, 0.005 mmol, 1 mol%) in anhyd CH2Cl2 (0.2 mL). The
(1) Meskens, F. A. J. Synthesis 1981, 501.
(2) Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic Syn-
thesis, 3rd ed; Wiley-Interscience: New York, 1999.
(3) Cameron, A. F. B.; Hunt, J. S.; Oughton, J. F.; Wilkinson, P. A.;
Wilson, B. M. J. Chem. Soc. 1953, 3864.
(4) Wenkert, E.; Goodwin, T. E. Synth. Commun. 1977, 7, 409.
(5) (a) Taylor, E. C.; Chiang, C.-S. Synthesis 1977, 467. (b) Mizugake,
T.; Ebitani, K.; Kaneda, K. Tetrahedron Lett. 2001, 42, 8329.
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–E