Organometallics
COMMUNICATION
the diastereomeric mixture of the product. The enamines 1-(1-
cyclohexen-1-yl)-piperidine and 2-methylene-1,3,3-trimethylin-
doline were also quantitatively reduced by this transfer hydro-
genation protocol. Application of this transfer hydrogenation
protocol to N-heterocyclic substrates resulted in lower yields. For
example, 8-methylquinoline was reduced to 8-methyl-1,2,3,
(8) Ueda, M.; Kano, T.; Maruoka, K. Org. Biomol. Chem. 2009,
7, 2005.
(9) Enders, D.; Wang, C.; Liebich, J. X. Chem.—Eur. J. 2009, 15,
1
1058.
(10) Buckley, B. R. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2009,
1
05, 113.
(11) Meerwein, H.; Schmidt, R. Justus Liebigs Ann. Chem. 1925, 444, 221.
4
-tetrahydroquinoline in 56% yield, whereas the aziridine
(12) Ponndorf, W. Angew. Chem. 1926, 39, 138.
cis-(PhCH) NPh was reduced to give PhN(CH Ph) in 27%
2
2
2
(13) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986.
14) Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem.
yield. In both cases, the residual starting material was the only
other product. The formation of PhN(CH Ph) is presumably
(
2
2
Soc. 2004, 127, 32.
derived from the thermally induced CÀC bond cleavage of the
(15) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. Angew. Chem.,
Int. Ed. 2004, 43, 6660.
4
6
47,48
aziridine, affording an azomethine ylide
that then under-
(
16) Ouellet, S. G.; Walji, A. M.; Macmillan, D. W. C. Acc. Chem. Res.
007, 40, 1327.
17) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W.
Science 2006, 314, 1124.
goes reaction via proton and hydride transfer. This stands in
2
contrast to the B(C F ) -catalyzed hydrogenation of cis-1,2,
6
5 3
(
3
-triphenylaziridine that proceeds via the protonation of aziridine
from hydrogen splitting, followed by NÀC bond scission, to give
(18) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880.
19
PhCH CH(Ph)NHPh.
2
(19) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew.
In conclusion, we have demonstrated that the activation of
amines by B(C F ) via hydride abstraction is evident from the
Chem., Int. Ed. 2007, 46, 8050.
6
5 3
(20) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.
(21) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fr €o hlich, R.;
Erker, G. Angew. Chem., Int. Ed. 2008, 47, 7543.
catalytic racemization of a chiral amine. Moreover, this abstrac-
tion can be exploited for catalytic transfer hydrogenation of
imines, enamines, and N-heterocycles. This chemistry represents
a rare example of metal-free transfer hydrogenation. While other
reports have employed the pyridine derivative Hantzsch’s ester as
(22) Wang, H. D.; Fr €o hlich, R.; Kehr, G.; Erker, G. Chem. Commun.
2
008, 5966.
23) Sumerin, V.; Schulz, F.; Nieger, M.; Leskela, M.; Repo, T.;
Rieger, B. Angew. Chem., Int. Ed. 2008, 47, 6001.
24) Eros, G.; Mehdi, H.; Papai, I.; Rokob, T. A.; Kiraly, P.; Tarkanyi,
G.; Soos, T. Angew. Chem., Int. Ed. 2010, 49, 6559.
(
3
,16
the source of H2, this approach employs the readily accessible
(
iPr NH. Further studies of these and other main group-based
2
metal-free catalysts in a variety of catalytic processes is the subject
of ongoing study.
(25) Chen, D. J.; Klankermayer, J. Chem. Commun. 2008, 2130.
(26) Chen, D. J.; Wang, Y. T.; Klankermayer, J. Angew. Chem., Int. Ed.
2
010, 49, 9475.
’
ASSOCIATED CONTENT
(27) Yang, X. H.; Zhao, L. L.; Fox, T.; Wang, Z. X.; Berke, H. Angew.
Chem., Int. Ed. 2010, 49, 2058.
(28) Yang, X. H.; Fox, T.; Berke, H. Chem. Commun. 2011, 47, 2053.
S
Supporting Information. Synthetic, experimental, and
b
(
29) Millot, N.; Santini, C. C.; Fenet, B.; Basset, J. M. Eur. J. Inorg.
Chem. 2002, 3328.
30) Focante, F.; Mercandelli, P.; Sironi, A.; Resconi, L. Coord.
Chem. Rev. 2006, 250, 170.
crystallographic details. This material is available free of charge
via the Internet at http://pubs.acs.org.
(
’
AUTHOR INFORMATION
(
(
31) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245.
32) (R,R)-bis(Phenylethyl)amine (0.273 g, 1.21 mmol) was trans-
Corresponding Author
6 5 3 6 5
ferred with 1 mol % B(C F ) (6.2 mg, 0.0121 mmol) in 1 mL of C D Br
to a J-Young NMR tube. The tube was sealed and immersed in an oil
*E-mail: dstephan@chem.utoronto.ca.
bath at 80 °C. Conversion to a mixture of diastereomers was observed by
1
H NMR spectroscopy.
’
ACKNOWLEDGMENT
(
33) Crystallographicdatafor2: C16
H20ClN, MW = 261.78, T= 150 K,
The financial support of LANXESS Inc., NSERC of Canada,
space group = monoclinic, P2 /n, a = 7.5592(6) Å, b = 18.2567(14) Å,
c = 10.8792(8) Å, β= 92.180(4) , V = 1500.3(2) Å , Z =4, μ= 0.238mm ,
measured reflections = 13779, independent reflections = 4571, para-
meters = 165, Rint = 0.0531, R = 0.0511, Rw = 0.1417, GOF = 0.905. 3:
1
o
3
À1
and the Ontario Centres of Excellence is gratefully acknowl-
edged. D.W.S. is grateful for the award of a Killam Research
Fellowship 2009-2011 and a Canada Research Chair. Z.M.H. is
grateful for the award of an Ontario Postdoctoral Fellowship. We
would like to dedicate this work to Professor Christian Bruneau
on the occasion of his 60th birthday.
C
34
H
21BF15N, MW = 739.33, T = 150 K, space group = monoclinic,
P2 /c, a = 10.5576(6) Å, b = 11.9278(6) Å, c = 24.2325(13) Å,
1
o
3
À1
β = 98.135(2) , V = 4674.4(4) Å , Z = 4, μ = 0.159 mm , measured
reflections = 21558, independent reflections = 6876, parameters = 482,
Rint = 0.0630, R = 0.0523, Rw = 0.1221, GOF = 0.967.
’
REFERENCES
(34) Welch, G. C.; Prieto, R.; Dureen, M. A.; Lough, A. J.; Labeodan,
(
1) Weiner, B.; Szymanski, W.; Janssen, D. B.; Minnaard, A. J.;
O. A.; Holtrichter-Rossmann, T.; Stephan, D. W. Dalton Trans. 2009,
1559.
Feringa, B. L. Chem. Soc. Rev. 2010, 39, 1656.
(
(
(
2) Vicario, J. L.; Badia, D. ChemCatChem 2010, 2, 375.
3) Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852.
4) Nielsen, M.; Jacobsen, C. B.; Holub, N.; Paixao, M. W.; Joergensen,
(35) Welch, G. C.; Cabrera, L.; Chase, P. A.; Hollink, E.; Masuda,
J. D.; Wei, P. R.; Stephan, D. W. Dalton Trans. 2007, 3407.
(36) Heiden, Z. M.; Stephan, D. W. Chem. Commun. 2011, 47, 5729.
(37) Ahn, Y.; Ko, S.-B.; Kim, M.-J.; Park, J. Coord. Chem. Rev. 2008,
252, 647.
(38) Blacker, A. J.; Stirling, M. J.; Page, M. I. Org. Process Res. Dev.
2007, 11, 642.
(39) Jerphagnon, T.; Gayet, A. J. A.; Berthiol, F.; Ritleng, V.; Mrsic,
N.; Meetsma, A.; Pfeffer, M.; Minnaard, A. J.; Feringa, B. L.; de Vries,
J. G. Chem.—Eur. J. 2009, 15, 12780.
K. A. Angew. Chem., Int. Ed. 2010, 49, 2668.
5) Jacobsen, E. N.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A.
010, 107, 20618.
6) Buckley, B. R.; Neary, S. P. Annu. Rep. Prog. Chem., Sect. B: Org.
Chem. 2010, 106, 120.
7) Alba, A.-N. R.; Companyo, X.; Rios, R. Chem. Soc. Rev. 2010,
9, 2018.
(
2
(
(
3
4
499
dx.doi.org/10.1021/om2005832 |Organometallics 2011, 30, 4497–4500