METAL(II) COMPLEXES WITH FORMATES AND SOME NITROGEN DONOR LIGANDS
(Co, Cu [22], Cd), M(2-bpy) L ·nH O (Ni [22], Zn),
M(2,4’-bpy) L ·nH O (Mn, Co, Ni, Cu [22], Zn, Cd)
8 C. Kaes, A. Katz and M. W. Hosseini, Chem. Rev.,
00 (2000) 3553 and references therein.
3
2
2
1
2
2
2
9
G. Psomas, C. Dendrinou-Samara, P. Philippakopoulos,
V. Tangoulis, C. P. Raptopoulou, E. Samaras and
D. P. Kessissoglou, Inorg. Chim. Acta, 272 (1998) 24.
and M(4-bpy)L ·nH O (Mn, Co, Ni, Cu [19–21]). They
2
2
were prepared as solid state with various degree of
hydration or in anhydrous form [21]. The IR spectros-
copy confirms, that the metal ions are bonded to N-do-
nor ligands. The carboxylate groups have versatile the
mode of coordination to metal(II). These groups in the
obtained complexes with 2-bpy or 2,4’-bpy are bonded
as monodentate (or ‘pseudomonodentate’) ligands [22],
whereas bidentate chelating or bridging formates exist
in the major 4,4’-bipyridine complexes [19–21]. The
mode of metal-carboxylate coordination probably de-
pends on the nitrogen atoms position in the bipyridine
isomers [14, 32, 33]. The carboxylate groups in
1
1
0 P. Losier and M. J. Zaworotka, Angew. Chem. Int. Edit.
Engl., 35 (1996) 2779.
1 T. TÓaczaÓa, Wiadomoíci Chem., 45 (1991) 439.
12 A. B. Rovinsky and A. M. Zhabotynskii, J. Phys. Chem.,
88 (1984) 6081.
13 L. P. Tikhonova, K. B. Yatsymirskii and W. Zajac, Teor.
Eksp. Khim., 20 (1984) 317.
1
4 R. KruszyÕski, B. Kuünik, T. J. Bartczak and
D. Czakis-Sulikowska, J. Coord. Chem., 58 (2005) 165.
5 Jian-Min Li, Yu-Gen Zhang, Jing-Hua Chen, Lei Rui,
Quan-Ming Wang and Xin-Tao Wu, Polyhedron,
1
19 (2000) 1117.
1
,10-phenanthroline-formato complexes of Mn(II),
1
6 J.-H. Liao, S.-H. Chehg and C.-T. Su, Inorg. Chim.
Commun., 5 (2002) 761.
Ni(II) and Zn(II) behave as bidentate chelating ligands.
The investigated mixed-ligands metals(II) com-
plexes with N-donors and formates are more stable
than the major formate dihydrates of M(II) [42]. Ther-
mal decomposition of obtained complexes started
with the release of water molecules. The pyrolysis of
transition anhydrous complexes is multistage and
yields oxides as final products. Among obtained com-
plexes the most stable are 2,4’-bipyridine-formato
17 B. J. Hathaway, I. M. Procter, R. C. Slade and
A. A. G. Tomlinson, J. Chem. Soc., 2219 (1969).
1
1
2
8 W. Fitzgerald and B. J. Hathaway, J. Chem. Soc. Dalton
Trans., 657 (1981).
9 X.-Y. Wang, H.-Y. Wei, Z.-M. Wang, Z.-D. Chen and
S. Gao, Inorg. Chem., 44 (2005) 572.
0 I. L. Manson, I. G. Leher, J. Y. Gu, R. Geiser,
J. A. Schlueter, R. Henning, X. P. Wang, A. J. Schultz,
H. J. Koo and M. H. Whangbo, J. Chem. Soc. Dalton
Trans., 2905 (2003).
(
initial
Zn(2,4’-bpy)
,4’-bipyridine-formato compounds [21]. The
temperature
of
decomposition
of
L
·H
O
is 200°C) and some
21 D. Czakis-Sulikowska, M. Markiewicz and
J. RadwaÕska-Doczekalska, Pol. J. Chem.,
2
2
2
4
7
7 (2003) 1255.
phenathroline-formato complexes are somewhat more
stable than compounds with 2,2-bipyridine.
Additionally, in this paper we stated, that the
2
2
2 D. Czakis-Sulikowska, J. RadwaÕska-Doczekalska,
A. Czylkowska, M. Markiewicz and A. Broniarczyk,
J. Therm. Anal. Cal., 86 (2006) 327.
complexes
of
Zn(2,4’-bpy)
2
L
2
·H
2
O
Cd(2,4’-bpy) L ·H O are isostructural. The magnetic
and
3 T. Tokii, N. Watanable, M. Nakashima, Y. Muto,
M. Marooka, S. Ohba and Y. Saito, Bull. Chem. Soc. Jpn.,
2
2
2
moment and the ligand field spectrum of complex
Ni(phen)L ·2H O is characteristic of octahedral envi-
ronment around Ni(II).
6
3 (1990) 364.
2
2
24 E. KÞnig, Magnetic Properties of Coordination and
Organometallic Transition Metal Compounds, Springer,
Berlin 1966.
2
2
5 W. J. Geary, Coord. Chem. Rev., 7 (1971) 81.
6 A. B. P. Lever, Inorganic Electronic Spectroscopy,
Elsevier, Amsterdam 1984.
References
2
2
2
3
3
3
3
3
3
7 S. F. A. Kettle, Physical Inorganic Chemistry, Spectrum
Academic Publications, Oxford 1996.
1
2
3
H. Olmez, F. Arslan and H. Icbudak, J. Therm. Anal. Cal.,
6 (2004) 793.
7
8 P. Castan, F. Dahan, S. Wimmer and F. L. Wimmer,
J. Chem. Soc. Dalton Trans., 2971 (1990).
9 J. S. Strukl and J. L. Walter, Spectrochim. Acta,
D. Czakis-Sulikowska, A. Malinowska and A. £uczak,
J. Therm. Anal. Cal., 78 (2004) 641 and references therein.
D. Czakis-Sulikowska, J. RadwaÕska-Doczekalska,
A. Czylkowska and J. GoÓuchowska, J. Therm. Anal. Cal.,
2
7 A (1971) 223.
0 A. A. Schilt and R. C. Taylor, J. Inorg. Nucl. Chem.,
(1959) 211.
78 (2004) 501.
9
4
J. B. Vincent, Tsac Hui-Lún, A. B. Blackman,
E. B. Lobkovsky, D. N. Hendrickson and G. Christoug,
J. Am. Chem. Soc., 115 (1993) 2353.
1 C. K. Pearce, D. W. Grosse and W. Hessel, Chem. Eng.
Data, 15 (1970) 567.
2 R. KruszyÕski, A. Adamczyk, J. RadwaÕska-Doczekalska
and T. J. Bartczak, J. Coord. Chem., 55 (2002) 1209.
3 A. Czylkowska, R. KruszyÕski, D. Czakis-Sulikowska and
T. J. Bartczak, J. Coord. Chem., 57 (2004) 239.
4 R. Carballo, B. Covelo, S. Balboa, A. Castiàerias and
J. Niclós, Z. Anorg. Chem., 627 (2001) 948.
5
6
7
R. Carballo, A. Castiàeiras, S. Balboa, B. Covelo and
J. Niclós, Polyhedron, 21 (2002) 2811.
R. Carballo, A. CastiÔerias, B. Covelo and
E. M. Váquez-Làpez, Polyhedron, 20 (2001) 899.
E. Dubler, U. K. Häring, K. H. Scheller, P. Baltzer and
H. Sigel, Inorg. Chem., 23 (1984) 3785.
5 R. Kurpiel-Gorgol and W. Brzyska, J. Therm. Anal. Cal.,
71 (2003) 539.
J. Therm. Anal. Cal., 90, 2007
563