HEMIMELLITIC ACID COMPLEXES
4 T. Sato, W. Mori, Ch. N. Kato, E. Y, T. Kuribayashi,
connected with degradation of anhydrous complexes
that begins in the temperature range 335–400°C. The
decomposition process of the complexes is associated
with burning of organic ligand resulting in strong
exothermic effect. Such way of degradation
mechanism is characteristic for complexes of
lanthanide benzoates [22]. As the final solid products
of thermal decomposition suitable metal oxides
(Ln2O3, CeO2, Pr6O11, Tb4O7) are formed in the range
565–760°C.
R. Ohtera and Y. Shiraishi, J. Catal., 232 (2005) 186.
5 B. G. Yong, X. Wang, E. V. Anokhina and A. J. Jacobson,
Inorg. Chem., 44 (2005) 8265.
6 F. A. Almeida Paz and J. Kalinowski, Chem. Commun.,
(2003) 1484.
7 K. Schlichte, T. Kratzke and S. Kaskel, Micropor.
Mesopor. Mater., 73 (2004) 81.
8 X. Guo, G. Zhu, Z. Li, F. Sun, Z. Yang and S. Qiu, Chem.
Commun., (2006) 3172.
9 M. J. Plater, M. R. St, Foreman, R. A. Howie,
J. M. S. Skakle and A. M. Z. Slawin, Inorg. Chim. Acta,
315 (2001) 126.
10 Z. Rz·czyÕska, A. Ostasz, M. Sikorska-Iwan,
H. GÓuchowska, E. Olszewska and S. Pikus, J. Therm.
Anal. Cal., 84 (2006) 575.
Conclusions
The new complexes of lanthanide(III) with hemimellitic
acid were obtained as hydrates. The 1,2,3-benzene-
tricarboxylate ligand is entirely deprotonated in the
studied complexes. As can be seen from infrared
spectra, the dihydrate complexes show different mode
of coordination in comparison to remaining
compounds. The decomposition process of the
studied complexes in the air atmosphere proceeds in
two main stages: dehydration and degradation of
organic ligand. Amorphous complexes lose water
molecules in one step. Dehydration process in crystalline
compounds occurs in overlapped stages.
Further synthesis in the gel medium and
hydrothermal conditions are provided in purpose to
obtaining monocrystals of lanthanide(III) hemimelli-
tates for X-ray structural investigations. Additionally,
examination of reversibility of dehydration process for
hydrated complexes will be done.
11 F. Mo and E. Adman, Acta Cryst., B31, (1975) 192.
12 L. Xu, B. Liu, G. Guo and J-S. Huang, Inorg. Chem.
Commun., 9 (2006) 220.
13 B. Liu and L. Xu, Inorg. Chem. Commun., 9 (2006) 364.
14 S. H. Dale, M. R. J. Elsegood and A. E. L. Coombs, Cryst.
Eng. Commun., 6 (2004) 328.
15 S. Holly and P. Sohar, Absorption Spectra in the Infrared
Region, Akadémiai Kiadó, Budapest 1975.
16 G. B. Deacon and R. J. Philips, Coord. Chem.. Rev.,
33 (1980) 227.
17 R. Pech and J. Pickardt, Acta Cryst., C47 (1991) 1831.
18 R. Pech and J. Pickardt, Acta Cryst.,C46 (1990) 1928.
19 R. yszczek, J. Therm. Anal. Cal., accepted.
20 M. Iwan. R. yszczek, A. Ostasz and Z. Rz·czyÕska,
J. Therm. Anal. Cal., 88 (2007) 157
21 E. V. Brusau, J. C. Pedregosa, G. E. Narda, G. Echeverria
and G. Punte, J. Sol. State Chem., 153 (2000) 1.
22 R. Kurpiel-Gorgol and W. Brzyska, J. Therm. Anal. Cal.,
85 (2006) 449.
Received: March 22 , 2007
Accepted: April 12 , 2007
OnlineFirst: July 11, 2007
References
1 W. Mori, T. Sato, T. Ohmura, C. N. Kato and T. Takei,
J. Solid State Chem., 178 (2005) 2555.
DOI: 10.1007/s10973-007-8471-3
2 P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom and
H. Fjellv¯g, Chem. Commun., (2006) 956.
3 Ch. Janiak, Dalton Trans., (2003) 2781.
J. Therm. Anal. Cal., 91, 2008
599