Kinetics of the CCO + NO and CCO + NO2 Reactions
J. Phys. Chem. A, Vol. 108, No. 1, 2004 79
18
would produce NCO + C O, in contrast to our assumptions.
The most important result from the ab initio calculations is that
the NOCCO structure is endoergic by 42 kJ/mol relative to the
CCO + NO reactants. Furthermore, the most direct path to this
structure, via TS6, involves a 88 kJ/mol barrier. Although other
pathways (not calculated) to I4 may exist (for example, opening
of the NOCCO three-membered ring (I2) via N-C bond fission),
the NOCCO structure itself is sufficiently high in energy to
exclude these pathways as major contributors to the reaction
mechanism.
(3) Moazzen-Ahmadi, N.; Boere, R. T. J. Chem. Phys. 1999, 110, 955.
(
(
4) Moazzen-Ahmadi, N.; Boere, R. T. J. Chem. Phys. 1998, 108, 6588.
5) Ohashi, N.; Kiryu, R.; Okino, S.; Fujitake, M. J. Mol. Spectrosc.
1
993, 157, 50.
(6) Fujitake, M.; Kiryu, R.; Ohashi, N. J. Mol. Spectrosc. 1992, 154,
169.
(7) Becker, K. H.; Horie, O.; Schmidt, V. H.; Wiesen, P. Chem. Phys.
Lett. 1982, 90, 64.
(8) Bauer, W.; Becker, K. H.; Meuser R. Ber. Bunsen-Ges. Phys. Chem.
1
985, 89, 340.
(9) Donnelly, V. M.; Pitts, W. M.; McDonald, J. R. Chem. Phys. 1980,
49, 289.
10) Williamson, D. G.; Bayes, K. D. J. Am. Chem. Soc. 1967, 89, 3390.
11) Chase, M. W., Jr. J. Phys. Chem. Ref. Data, Monograph No. 9,
NIST-JANAF Thermochemical Tables, 4th ed.; 1998.
12) Cyr, D. R.; Continetti, R. E.; Metz, R. B.; Osborn, D. L.; Neumark,
D. M. J. Chem. Phys. 1992, 97, 4937.
(13) Perry, R. A. J. Chem. Phys. 1985, 82, 5485.
(14) Hancock, G.; McKendrick, K. G. Chem. Phys. Lett. 1986, 127, 125.
15) Atakan, B.; Wolfrum, J. Chem. Phys. Lett. 1991, 178, 157.
16) Mertens, J. D.; Dean, A. J.; Hanson, R. K.; Bowman, C. T. Symp.
Int.) Combust. Proc. 1992, 24, 701.
(17) Juang, D. Y.; Lee, J.-S.; Wang, N. S. Int. J. Chem. Kinet. 1995,
7, 1111.
18) Cooper, W. F.; Park, J.; Hershberger, J. F. J. Phys. Chem. 1993,
7, 3283.
19) Anderson, D. J.; Rosenfeld, R. N. J. Chem. Phys. 1991, 94, 7857.
20) Quandt, R. W.; Hershberger, J. F. J. Phys. Chem. 1996, 100, 9407.
(21) Rothman, L. S.; Gamache, R. R.; Tipping, R. H.; Rinsland, C. P.;
Smith, M. A. H.; Benner, D. C.; Devi, V. M.; Flaud, J. M.; Camy-Peyret,
C.; Perrin, A.; Goldman, A.; Massie, S. T.; Brown, L. R.; Toth, R. A. J.
Quant. Spectrosc. Radiat. Transfer 1992, 48, 469.
(
(
One limitation of both the calculations and the experiments
reported above is that we cannot rule out the possibility that a
major product is the high energy isomer CNO rather than NCO.
We have no direct method of detecting CNO, however the
following experiment was performed. We measured the N2O
(
1
8
12 18
yield using natural abundance samples, and the O C O yield
(
(
18
using N O labeling. Since these products are formed only in
reactions (3a) and (3b), the ratio of these product yields should
be the same as previously measured branching ratios of reaction
(
2
9
(
3). We obtain φ3a ) 0.49 ( 0.02 and φ3b ) 0.51 ( 0.02, in
reasonable agreement with our previous measurements of φ3a
0.44 and φ3b ) 0.56.18 This strongly suggests one of the
(
)
(
(
following: either the (NCO) product formed in the title reaction
is NCO and not CNO, or any CNO quickly rearranges to NCO,
or that the CNO + NO reaction (for which no literature data
exist) has branching ratios similar to NCO + NO.
(
22) Long, D. A.; Murfin, F. S.; Williams, R. L. Proc. R. Soc. London
Conclusions
Ser. A 1954, 223, 251.
(
(
(
23) Fakhr, A.; Bates, R. D., Jr. Chem. Phys. Lett. 1980, 71, 381.
24) Stephenson, J. C.; Moore, C. B. J. Chem. Phys. 1970, 52, 2333.
25) Krishnan, R.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91.
The kinetics of the CCO + NO and CCO + NO2 reactions
were investigated. Both reactions are fast, with nearly temper-
ature-independent rate constants. Product yield experiments
using isotopically labeled NO combined with ab initio calcula-
tions demonstrate that NCO + CO is the major product channel
of the CCO + NO reaction at 298 K, with a branching ratio of
(26) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 65,
257.
27) Fock, V. Z. Physik 1930, 61, 126.
28) Curtis, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A., J.
2
(
(
Chem. Phys. 1991, 94, 7221.
(29) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys.
1987, 87, 5968.
0
.87 ( 0.05. CN + CO2 is a minor channel, with a branching
ratio of 0.13 ( 0.05.
(30) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.
1
980, 72, 6.
Acknowledgment. This work was supported by the Division
of Chemical Sciences, Office of Basic Energy Sciences of the
Department of Energy, Grant DE-FG03-96ER14645.
(
(
(
31) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
32) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson,
G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakreze-
wski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzales, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.:
Pittsburgh, PA, 1995.
References and Notes
(
1) Miller, J. A.; Bowman, C. T. Prog. Energy Combust. Sci. 1989,
5, 287.
2) Yamada, C.; Kanamori, H.; Horiguchi, H.; Tsuchiya, S.; Hirota,
E. J. Chem. Phys. 1986, 84, 2573.
1
(