NOx REDUCTION ON CeO2- AND La2O3-PROMOTED Pd AND Rh
259
to those on Rh/Al2O3. For the N2O + CO reaction, the
REFERENCES
turnover frequency on Pd/Rh/Al2O3 was an order of mag-
nitude lower than that on Pd/Al2O3, but within a factor of 2
of that on Rh/Al2O3. The combined kinetic results of NOx
reactions suggest that the surface properties of the bimetal-
lic sample are dominated by Rh. The lack of formation of
a Pd -hydride phase during dihydrogen chemisorption on
Pd/Rh/Al2O3 is consistent with this hypothesis.
1. Taylor, K. C., Catal. Rev.-Sci. Eng. 35, 457 (1993).
2. Cho, B. K., Shanks, B. H., and Bailey, J. E., J. Catal. 115, 486 (1989).
3. Oh, S. H., J. Catal. 124, 477 (1990).
4. Hecker, W. C., and Bell, A. T., J. Catal. 84, 200 (1983).
5. McCabe, R. W., and Wong, C., J. Catal. 121, 422 (1990).
6. Oh, S. H., Fisher, G. B., Carpenter, J. E., and Goodman, D. W., J. Catal.
100, 360 (1986).
7. Pande, N. T., and Bell, A. T., J. Catal. 98, 7 (1986).
8. Oh, S. E., and Eickel, C. C., J. Catal. 128, 526 (1991).
9. Belton, D. N., and Schmeig, S. J., J. Catal. 138, 70 (1992).
10. Trovarelli, A., de Leitenburg, C., and Dolcettis, G., Chemtech 32
(1997).
CONCLUSIONS
This paper describes the results of a comparative kinetic
study of the NO + CO, N2O + CO, and N2O decomposi-
tion reactions over alumina-, ceria/alumina-, and lanthana/
alumina-supported Pd and Rh catalysts. Since no syner-
gistic effect was found for NOx reduction on a Pd/Rh
bimetallic sample, monometallic catalysts were the fo-
cus of this study. For the NO + CO reaction, the changes
in kinetic parameters between alumina-, ceria/alumina-,
and lanthana/alumina-supported Rh agree qualitatively
with those previously reported in the literature for appar-
ent activation energies and reaction orders. Comparable
studies on promoted Pd catalysts are unavailable. In the
current work, the ceria/alumina-supported Pd catalyst ex-
hibited activity for the NO + CO reaction an order of mag-
nitude greater than that of ceria/alumina-supported Rh.
The lanthana/alumina-supported Pd catalyst was the sec-
ond most active. Additionally, the presence of ceria and
lanthana had a large effect on the kinetic parameters over
both Rh and Pd. However, these effects were not consistent
on both catalysts. The ceria and lanthana promoters appear
to affect the NO + CO reaction by facilitating the dissocia-
tion of NO at the metal/promoter interface. This explana-
tion can account for the altered activities, reaction orders,
and dinitrogen selectivities of the promoted catalysts. In ad-
dition, the ceria/metal interface appeared to dissociate NO
more effectively than the lanthana/metal interface.
11. Huang, S.-J., Walters, A. B., and Vannice, M. A., J. Catal. 173, 229
(1998).
12. Muraki, H., Shinjoh, H., Sobukawa, H., Yokata, K., and Fujitani, Y.,
Ind. Eng. Chem., Prod. Res. Dev. 25, 202 (1986).
13. Muraki, H., Shinjoh, H., and Fujitani, Y., Appl. Catal. 22, 325 (1986).
14. Steel, M. C. F., in “Catalysis and Automotive Pollution Control II”
(A. Crucq, Ed.), Vol. 71, p. 105. Elsevier, Brussels, Belgium, 1991.
15. Rainer, D. R., Vesecky, S. M., Oh, W. S., and Goodman, D. W., J. Catal.
167, 234 (1997).
16. Vesecky, S. M., Chen, P., Xu, X., and Goodman, D. W., J. Vac. Sci.
Technol. A 13, 1539 (1995).
17. Vesecky, S. M., Rainer, D. R., and Goodman, D. W., J. Vac. Sci. Technol.
A 14, 1457 (1996).
18. Rainer, D. R., Koranne, M., Vesecky, S. M., and Goodman, D. W.,
J. Phys. Chem. B 101, 10769 (1997).
19. Almusaiteer, K., and Chuang, S. S. C., J. Catal. 180, 161 (1998).
20. Almusaiteer, K., and Chuang, S. S. C., J. Catal. 184, 189 (1999).
21. Kenvin, J. C., White, M. G., and Mitchell, M. B., Langmuir 7, 1198
(1991).
22. Shi, C., Walters, A. B., and Vannice, M. A., Appl. Catal. B 14, 175
(1997).
23. Benson, J. E., Hwang, H. S., and Boudart, M., J. Catal. 30, 146 (1973).
24. Vannice, M. A., in “CatalysisScience and Technology” (J. R. Anderson
and M. Boudart, Eds.), Vol. 3, p. 139. Springer-Verlag, Berlin, 1982.
25. Keiski, R. L., Harkonen, M., Lahti, A., Maunula, T., Savimaki, A.,
and Slotte, T., in “Catalysis and Automotive Pollution Control III”
(A. Frennet and J.-M. Bastin, Eds.), Vol. 96, p. 85. Elsevier, Amster-
dam, 1995.
26. Unland, M., J. Catal. 31, 459 (1973).
27. Solymosi, F., and Bansagi, T., J. Phys. Chem. 83, 552 (1979).
28. Solymosi, F., Volgyesi, L., and Rasko, J., Z. Phys. Chem. 79, 79
(1980).
29. Cho, B. K., J. Catal. 148, 697 (1994).
30. Peden, C. H. F., Belton, D. N., and Schmeig, S. J., J. Catal. 155, 204
(1995).
31. Butler, J. D., and Davis, D. R., J. Chem. Soc., Dalton Trans. 2249
(1976).
32. Xi, G., Bao, J., Shao, S., and Li, S., J. Vac. Sci. Technol. A 10, 2351
(1992).
33. Graham, G. W., Logan, A. D., and Shelef, M., J. Phys. Chem. 97, 5445
(1993).
34. Belton, D. N., DiMaggio, C. L., Schmieg, S. J., and Ng, K. Y. S., J. Catal.
157, 559 (1995).
Although the presence of ceria increased the rate of the
N2O + CO reaction on both Pd and Rh, it had very little
effect on apparent activation energies and reaction orders.
Lanthana had no effect on activities or activation energies.
Based on infrared spectroscopy and reaction order data, the
N2O + CO reaction occurred via different mechanisms on
Rh and Pd. The reaction on Rh appeared to involve N2O
dissociating into N and NO with subsequent dissociation
of NO. For Pd, N2O appeared to react directly to N2 and
adsorbed oxygen.
35. Permana, H., Ng, S. K. Y., Peden, C. H. F., Schmeig, S. J., Lambert,
D. K., and Belton, D. N., J. Catal. 164, 194 (1996).
36. Ng, S. K. Y., Belton, D. N., Schmeig, S. J., and Fisher, G. B., J. Catal.
146, 394 (1994).
37. Schmick, H.-D., and Wassmuth, H.-W., Surf. Sci. 123, 471 (1982).
38. Alvero, R., Bernal, A., Carrizosa, I., and Odriozola, J. A., Inorg. Chim.
Acta 140, 45 (1987).
ACKNOWLEDGMENTS
This work was supported by the Division of Chemical Sciences, Office
of Basic Energy Sciences, Office of Energy Research, U.S. Department
of Energy. Additional support was provided by the Virginia Academic
Enhancement Program.