128
G. Qi et al. / Journal of Catalysis 226 (2004) 120–128
two-step route that involves oxidation of NH3 to NOx and
then reduction of NOx to N2 by NH3 [1,4]. According to
our catalytic performance and FT-IR results, it seems that
the SCO reaction on the Fe-exchanged zeolites takes place
by the two-step route; i.e., NO is an intermediate for N2
formation. NH3 was first oxidized to NO by O2. This reac-
tion occurs either on the catalyst surface or in the gaseous
phase, or both. Our empty-tube results showed that NH3
conversions were 23–55% at 350–450◦C under the condi-
tion of GHSV = 2.3 ×105 h−1, with NO as the predominant
product. Subsequently, the NO reacts with unreacted NH3 to
produce N2 through the SCR reaction. Therefore, good SCR
catalysts are expected to have high N2 selectivities for the
SCO reaction.
References
[1] N.I. P’chenko, Russian Chem. Rev. 45 (1976) 1119.
[2] Y. Li, J.N. Armor, Appl. Catal. B 13 (1997) 131.
[3] M. Amblard, R. Burch, B.W.L. Southward, Appl. Catal. B 22 (1999)
L159.
[4] M. Amblard, R. Burch, B.W.L. Southward, Catal. Today 59 (2000)
365.
[5] N.N. Sazonova, A.V. Simakov, T.A. Nikoro, G.B. Barannik, V.F.
Lyakhova, V.I. Zheivot, Z.R. Ismagilov, H. Veringa, React. Kinet.
Catal. Lett. 57 (1996) 71.
[6] L. Gang, J. van Grondelle, B.G. Anderson, R.A. van Santen, J. Ca-
tal. 186 (1999) 100.
[7] T. Curtin, F. O’Regan, C. Deconinck, N. Knuttle, B.K. Hodnett, Catal.
Today 55 (2000) 189.
[8] A. Wöllner, F. Lange, H. Schmelz, H. Knözinger, Appl. Catal. A 94
(1993) 181.
[9] R.Q. Long, M.T. Chang, R.T. Yang, Appl. Catal. B 33 (2001) 97.
[10] R.Q. Long, R.T. Yang, Chem. Commun. 5 (2000) 1651.
[11] R.Q. Long, R.T. Yang, J. Catal. 201 (2001) 145.
[12] R.Q. Long, R.T. Yang, J. Catal. 207 (2002) 158.
[13] P. Fabrizioli, T. Burgi, A. Baiker, J. Catal. 207 (2002) 88.
[14] F. Cavani, F. Trifiro, Catal. Today 4 (1989) 253.
[15] H.S. Gandhi, M. Shelef, J. Catal. 40 (1975) 312.
[16] H.Y. Chen, W.M.H. Sachtler, Catal. Today 42 (1998) 73.
[17] K. Krishna, G.B.F. Seijger, C.M. van den Bleek, M. Makkee, Guido
Mul, H.P.A. Calis, Catal. Lett. 86 (2003) 121.
[18] P.A. Jacobs, R. Von Ballmoos, J. Phys. Chem. 86 (1982) 3050.
[19] R. Joyner, M. Stockenhuber, J. Phys. Chem. B 103 (1999) 5963.
[20] L.J. Lobree, I.-C. Hwang, J.A. Reimer, A.T. Bell, J. Catal. 186 (1999)
242.
[21] N.Y. Topsøe, J. Catal. 128 (1991) 499.
[22] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, J. Catal. 171 (1997)
208.
5. Conclusions
Based on the above results, it can be concluded that
Fe-exchanged zeolites prepared by vapor-phase exchange
method are highly active for the SCO of ammonia to nitro-
gen. Fe-ZSM-5 and Fe-mordenite (MOR) showed excellent
SCO performances at a very high space velocity (GHSV =
2.3 ×105 h−1). Over 99% NH3 conversion and nearly 100%
N2 selectivity were obtained. Among different subliming
temperature, the catalytic performance decreased in the se-
quence of Fe-ZSM-5 (700) > Fe-ZSM-5 (600) > Fe-ZSM-5
(500), Fe-ZSM-5 (400), Fe-ZSM-5 (350). Among different
Fe-zeolites catalysts by subliming at 700 ◦C, the catalytic
performance decreased in the sequence of Fe-ZSM-5 > Fe-
MOR > Fe-FER > Fe-Beta > Fe-Y. For the Fe-exchanged
zeolites, there existed a good correlation between the N2 se-
lectivity for the SCO reaction and the activity for the SCR
(selective catalytic reduction) of NO with ammonia; i.e., the
higher the SCR activity, the higher the SCO N2 selectivity.
The FT-IR results supported the two-step mechanism: NO is
an intermediate for N2 formation and NH3 was first oxidized
to NO by O2.
[23] H.Y. Chen, T. Voskoboinikov, W.M.H. Sachtler, J. Catal. 180 (1998)
171.
[24] J. Laane, J.R. Ohlsen, Prog. Inorg. Chem. 27 (1980) 465.
[25] J. Eng, C.H. Bartholomew, J. Catal. 171 (1997) 27.
[26] Y. Li, J.N. Armor, J. Catal. 150 (1994) 388.
[27] J. Valyon, W.K. Hall, J. Phys. Chem. 97 (1993) 1204.
[28] Q. Zhu, B.L. Mojet, R.A.J. Janssen, E.J.M. Hensen, J. van Grondelle,
P.C.M.M. Magusin, R.A. van Santen, Catal. Lett. 81 (2002) 205.
[29] D. Kaucky, A. Vondroval, J. Dedecek, B. Wichterlova, J. Catal. 194
(2000) 318.
[30] Z. Sobalik, J. Dedecek, D. Kaucky, B. Wichterlova, L. Drozdova, R.
Prins, J. Catal. 194 (2000) 330.
[31] R. Joyner, M. Stockenhuber, J. Phys. Chem. B 103 (1999) 5963.
[32] R.Q. Long, R.T. Yang, J. Catal. 194 (2000) 80.
[33] F. Al-Mashta, N. Sheppard, V. Lorenzelli, G. Busca, J. Chem. Soc.,
Faraday Trans. I 18 (1982) 979.
Acknowledgments
[34] H. Bosh, F. Jassen, Catal. Today 2 (1988) 369.
[35] G. Ramis, L. Yi, G. Busca, Catal. Today 28 (1996) 373.
We are grateful to NSF and EPRI for support.