Inorganic Chemistry
Article
(4) Qi, D. F.; Tann, C. M.; Haring, D; Distefano, M. D. Chem. Rev.
2001, 101, 3081.
(5) Goldshleger, R.; Karlish, S. J. D. Proc. Natl. Acad. Sci. U.S.A. 1997,
they may shed more light on the molecular origin of their
biological activity.
94, 9596.
EXPERIMENTAL SECTION
Materials. Glycylserine (GlySer), leucylserine (LeuSer), histidyl-
serine (HisSer), glycylalanine (GlyAla), serylglycine (SerGly), and
sodium molydate were purchased from Acros and used without further
■
(6) Chin, J. Acc. Chem. Res. 1991, 24, 145.
(7) Mocz, G.; Gibbons, I. R. J. Biol. Chem. 1990, 265, 2917.
(8) Duff, M. R; Kumar, C. V. Metallomics 2009, 1, 518.
(9) Wei, C. H.; Chou, W. Y.; Huang, S. M.; Lin, C. C.; Chang, G. G.
Biochemistry 1994, 33, 7931.
1
purification. The pD of the solutions for the H NMR studies was
adjusted with D2SO4 and NaOD, both from Acros. Ac−GlySer and
GlySer−OEt were synthesized using a standard procedure.60
NMR Spectroscopy. 1H and 13C spectra were recorded on Bruker
Advance 400 and Bruker Advance 600 spectrometers. D2O with 0.05
wt % 3-(trimethylsilyl) propionic acid as an internal standard was used
as a solvent. A solution of TMS in CDCl3 was employed as an external
13C NMR reference.
(10) Luo, S.; Ishida, H.; Makino, A.; Mae, T. J. Biol. Chem. 2002, 277,
12382−12387.
(11) Zaychikov, E.; Martin, E.; Denissova, L.; Kozlov, M.;
Markovtsov, V.; Kashlev, M.; Heumann, H.; Nikiforov, V.; Goldfarb,
A.; Mustaev, A. Science 1996, 273, 107.
(12) Gallagher, J.; Zelenko, O.; Walts, A. D.; Sigman, D. S.
Biochemistry 1998, 37, 2096.
(13) Grodsky, N. B.; Soundar, S.; Colman, R. F. Biochemistry 2000,
39, 2193.
(14) Hlavaty, J. J.; Benner, J. S.; Hornstra, L. J.; Schildkraut, I.
Biochemistry 2000, 39, 3097.
(15) Hua, S.; Inesi, G.; Toyoshima, C. J. Biol. Chem. 2000, 275,
30546.
(16) Cheng, X.; Shaltiel, S.; Taylor, S. A. Biochemistry 1998, 37,
14005.
(17) Baichoo, N.; Heyduk, T. Protein Sci. 1999, 8, 518.
(18) Montigny, C.; Jaxel, C.; Shainskaya, A.; Vinh, J.; Labas, V.;
Moller, J. V.; Karlish, S. J. D.; le Maire, M. J. Biol. Chem. 2004, 279,
43971.
(19) Lee, T. Y; Suh, J. H. Chem. Soc. Rev. 2009, 38, 1949.
(20) Chei, W. S; Suh, J. Prog. Inorg. Chem. 2007, 55, 79.
(21) Suh, J; Chei, W. S. Curr. Opin. Chem. Biol. 2008, 12, 207.
(22) Suh, J. Acc. Chem. Res. 2003, 36, 562.
Kinetics. In a typical kinetic experiment, the hydrolysis of a 2 mM
peptide in the presence of 120 mM molybdate was followed by H
1
NMR spectroscopy. For example, the typical reaction mixture was
prepared by dissolving 0.32 mg of GlySer in 1 mL of D2O to which 92
mg of Na2MoO4 × 2 H2O was added. The pH of the final mixture was
adjusted by adding small amounts (typically 1−5 μL) of 2 M D2SO4 or
1.5 M NaOD. The pH of the solution was measured in the beginning
and at the end of the hydrolytic reaction, and the difference was
typically less than 0.1 unit. The pD value of the solution was obtained
by adding 0.41 to the pH reading, according to formula pD = pH +
0.41.48 The reaction samples were kept at constant temperature
(typically 60 °C), and the rate constants for the hydrolysis were
determined by following the appearance of the free glycine resonance
1
in the H NMR spectra at different time intervals. The observed first
order rate constants (kobs) were calculated by the integral method from
at least 90% conversion. This included integrating proton NMR
resonances of free glycine and plotting them as a function of time. The
linear fitting method (ln[A] = kobs × t + C), where A is the
concentration of the substrate and t is the time at which the
concentration measured was used. The R values were generally higher
than 0.98. The Michaelis−Menten kinetic measurements were
performed on samples which contain a fixed concentration of GlySer
(2 mM), while the concentration of molybdate was increased from 0
to 625 mM.
The influence of the ionic strength on the reaction rate was studied
by following the reaction between 2 mM GlySer and 120 mM
Na2MoO4 (pD = 7.0, 60 °C) in the presence of different amounts of
NaClO4. As before, the rate constants were determined by the
integration of the 1H NMR signal intensities of the CH2 group of free
glycine.
(23) Radzicka, A; Wolfenden, R. J. Am. Chem. Soc. 1996, 118, 6105.
(24) Whitelegge, J. P.; Gomez, S. M.; Faull, K. F. Adv. Protein Chem.
2003, 65, 271.
(25) Chin, J Acc. Chem. Res. 1991, 24 (4), 2005.
(26) (a) Bamann, E; Hass, J. G.; Trapmann, H. Arch. Pharm. 1961,
294, 569. (b) Yashiro, M.; Sonobe, Y.; Yamamura, A.; Takarada, T.;
Komiyama, M.; Fujii, Y. Org. Biomol. Chem. 2003, 1, 629.
(27) (a) Fujii, Y.; Kiss, T.; Gajda, T.; Tan, X. S.; Sato, T.; Nakano, Y.;
Hayashi, Y.; Yashiro, M. J. Biol. Inorg. Chem. 2002, 7, 843. (b) Hegg, E.
L.; Burstyn, J. N. J. Am. Chem. Soc. 1995, 117, 7015. (c) Zhang, L.;
Mei, Y.; Zhang, Y.; Li, S.; Sun, X.; Zhu, L. Inorg. Chem. 2003, 42, 492.
(28) (a) Krezel, A.; Kopera, E.; Protas, A. M.; Poznanski, J.;
Wysłouch-Cieszynska, A.; Bal, W. J. Am. Chem. Soc. 2010, 132 (10),
3355. (b) Kopera, E.; Krezel, A.; Protas, A. M.; Belczyk, A.; Bonna, A.;
Wyslouch-Cieszynska, A.; Poznanski, J.; Bal, W. Inorg. Chem. 2010,
6636−6645.
ASSOCIATED CONTENT
* Supporting Information
Additional tables, figures, and schemes. This material is
■
S
(29) (a) Milovic, N. M.; Kostic, N. M. J. Am. Chem. Soc. 2003, 125,
781. (b) Zhu, L. G.; Qin, L.; Parac, T. N.; et al. J. Am. Chem. Soc. 1994,
116, 5218.
(30) Takarada, T.; Yashiro, M.; Komiyama, M. Chem.Eur. J. 2000,
AUTHOR INFORMATION
■
6, 3906−3913.
Corresponding Author
(31) Kassai, M.; Grant, K. B. Inorg. Chem. Commun. 2008, 11, 521.
(b) Kassai, M.; Ravi, R. G.; Shealy, S. J.; Grant, K. B. Inorg. Chem.
2004, 43, 6130.
(32) Grant, K. B.; Kassai, M. Curr. Org. Chem. 2006, 10, 1035.
(33) (a) Parac, T. N.; Ullmann, G. M.; Kostic, N. M. J. Am. Chem.
Soc. 1999, 121, 3127−3135. (b) Parac, T. N.; Kostic, N. M. Inorg.
Chem. 1998, 37, 2141. (c) Milinkovic, S. U.; Parac, T. N.; Djuran, M.
I.; et al. Dalton Trans. 1997, 16, 2771. (d) Parac, T. N.; Kostic, N. M. J.
Am. Chem. Soc. 1996, 118, 51. (e) Parac, T. N.; Kostic, N. M. J. Am.
Chem. Soc. 1996, 118, 5946.
(34) Erxleben, A. Inorg. Chem. 2005, 44, 1082−1094.
(35) Cruywagen, J. J. Adv. Inorg. Chem. 2000, 49, 127 and references
therein.
ACKNOWLEDGMENTS
■
T.N.PV. thanks K. U. Leuven for the financial support
(START1/09/028). P.H.H. thanks the Vietnamese Govern-
ment and K. U. Leuven for a doctoral fellowship. K.S. thanks
F.W.O. Flanders for the doctoral fellowship.
REFERENCES
■
(1) Rana, T. M.; Meares, C. F. J. Am. Chem. Soc. 1990, 112, 2457.
(2) Xu, G. H.; Chance, M. R. Chem. Rev. 2007, 107, 3514.
(3) Wu, J.; Perrin, D. M.; Sigman, D. S.; Kaback, H. R. Proc. Natl.
Acad. Sci. U.S.A. 1995, 92, 9186.
(36) Fujita, H.; Fujita, T.; Sakurai, T.; Seto, Y. Chemotherapy 1992,
40, 173.
12032
dx.doi.org/10.1021/ic2015034|Inorg. Chem. 2011, 50, 12025−12033