6386 J. Phys. Chem. A, Vol. 107, No. 33, 2003
Nakano et al.
It is not known to the authors how mixing of this air can effect
DMS oxidation in the MBL in places such as the Mace Head
site.
(6) James, J. D.; Harrison, R. M.; Savage, N. H.; Allen, A. G.; Grenfell,
J. L.; Allan, B. J.; Plane, J. M. C.; Hewitt, C. N.; Davison, B.; Robertson,
L. J. Geophys. Res. 2000, 105, 26379-26392.
(7) Wallington, T. J.; Atkinson, R.; Winer, A. M.; Pitts, J. N. J. Phys.
Recent measurements show that concentrations of iodine
monoxide (IO) in the marine boundary layer are much higher
than previously thought.14 These data show marine boundary
layer IO seems to be predominately produced by the photolysis
and oxidation of CH2I2. While CH3I is the most abundant iodine-
containing species emitted from the oceans, CH2I2 is photolyzed
by longer wavelength light,16 hence acting as the source of IO
in the lower atmosphere more efficiently. There is further
evidence of this in the work of Simpson et al.,50 showing that
CH3I and DMS concentrations are not correlated in the MBL.
Chem. 1986, 90, 4640-4644.
(8) Dlugokencky, E. J.; Howard, C. J. J. Phys. Chem. 1988, 92, 1188-
1193.
(
9) Hynes, A. J.; Wine, P. H.; Semmes, D. H. J. Phys. Chem. 1986,
0, 4148-4156.
10) Barone, S. B.; Turnipseed, A. A.; Ravishankara, A. R. J. Phys.
9
(
Chem. 1996, 100, 14694-14702.
(11) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
M. J. Chemical Kinetics and Photochemical Data for use in Stratospheric
Modeling, JPL Publication 97-4; Jet Propulsion Laboratory: Pasadena, CA,
1997.
(12) Alicke, B.; Habestreit, K.; Stutz, J.; Platt, U. Nature 1999, 397,
572-573.
14
Measurements by Carpenter et al. show that IO concentrations
8
-3
can reach as high as 1.5 × 10 molecules cm . It should be
noted that there are only a few measurements of IO in the MBL
and more measurements need to be made to assess its
significance. The room-temperature rate constant measured in
(
13) Happell, J. D.; Wallace, D. W. R. Geophys. Res. Lett. 1996, 23,
105-2108.
14) Carpenter, L. J.; Sturges, W. T.; Penkett, S. A.; Liss, P. S.; Alicke,
2
(
B.; Hebestreit, K.; Platt, U. J. Geophys. Res. 1999, 104, 1679-1689.
(15) Yokouchi, Y.; Nojiri, Y.; Barrie, L. A.; Toom-Sauntry, D.;
Fujinuma, Y. J. Geophys. Res. 2001, 106, 12661-12668.
(16) Roehl, C. M.; Burkholder, J. B.; Moortgat, G. K.; Ravishankara,
-
13
3
-1 -1
this work is 2.5 × 10
cm molecule s . Under these
conditions, the lifetime of DMS with respect to IO is about 7.4
1
4
h. It should be noted that, for the field measurements, IO
concentrations were below the detection limit of the instrumen-
tation on most days. The detection limits for the quoted
measurements are near 5 × 10 molecules cm . However, even
using the detection limit as a typical maximum of IO, the
lifetime of DMS with respect to IO becomes 22 h. The daily
temporal profile of IO concentration should generally be similar
to that of OH because they are both produced by photolysis of
species (O3 and CH2I2) that absorb light in roughly the same
region of the solar spectrum. Furthermore, recent works by de
A. R.; Crutzen, P. J. J. Geophys. Res. 1997, 102, 12819-12829.
(17) Turnipseed, A. A.; Giles, M. K.; Burkholder, J. B.; Ravishankara,
A. R. Chem. Phys. Lett. 1995, 242, 427-434.
(18) Bauer, D.; Ingham, T.; Carl, S. A.; Moortgat, G. K,; Crowley, J.
N. J. Phys. Chem. A 1998, 102, 2857-2864.
7
-3
(
19) Rowley, D. M.; Mossinger, J. C.; Cox, R. A.; Jones, R. L. J. Atmos.
Chem. 1999, 34, 137-151.
20) Bloss, W. J.; Rowley, D. M.; Cox, R. A.; Jones, R. L. J. Phys.
(
Chem. A 2001, 105, 7840-7854.
(21) Martin, D.; Jourdain, J. L.; Laverdet, G.; Le Bras, G. Int. J. Chem.
Kinet. 1987, 19, 503-512.
(22) Barnes I.; Becker, K. H.; Carlier, P.; Mouvier, G. Int. J. Chem.
Kinet. 1987, 19, 489-501.
5
1
Chen et al. show an underestimation of DMSO yield from
DMS oxidation. Oxidation by halogen oxides is thought to
produce DMSO with a yield of almost unity.1
(
23) Maguin, F.; Mellouki, A.; Laverdet G.; Poulet, G.; Le Bras, G.
Int. J. Chem. Kinet. 1991, 23, 237-245.
24) Barnes, I.; Bastian, V.; Becker, K. H.; Oerath, R. D. Int. J. Chem.
Kinet. 1991, 23, 579-591.
25) Daykin, E. P.; Wine, P. H. J. Geophys. Res. 1990, 95, 18547-
18553.
(26) Knight, G. P.; Crowley, J. N. Phys. Chem. Chem. Phys. 2001, 3,
93-401.
27) Nakano, Y.; Goto, M.; Hashimoto, S.; Kawasaki, M.; Wallington,
T. J. J. Phys. Chem. A 2001, 105, 11045-11050.
28) Ninomiya, Y.; Hashimoto, S.; Kawasaki, M.; Wallington, T. J. Int.
(
5. Conclusions
(
We have measured the pressure and temperature dependencies
of the reaction of IO + DMS. The rate constant was measured
by using cavity ring-down spectroscopy. This allowed us to
measure a small amount of IO, reducing the uncertainties
associated with some other techniques, such as wall loss. At
lower pressures, the rate constant was found to be in reasonable
agreement with previously reported values. The reaction shows
a pressure dependence, however. Under atmospheric conditions
relevant to the marine boundary layer, we show that IO can be
an important oxidizer of DMS. For this reason, modeling studies
and field measurement campaigns should be performed to
provide better understanding of this critical topic.
3
(
(
J. Chem. Kinet. 2000, 32, 125-130.
(29) Gilles, M. K.; Turnipseed, A. A.; Talukdar, R. K.; Rudich, Y.;
Villalta, P. W.; Huey, L. G.; Burkholder, J. B.; Ravishankara, A. R. J. Phys.
Chem. 1996, 100, 14005-14015.
(30) Harwood, M. H.; Burkholder, J. B.; Hunter, M.; Fox, R. W.;
Ravishankara, A. R. J. Phys. Chem. A 1997, 101, 853-863.
(31) Holscher, D.; Fockenberg, C.; Zellner, R. Ber. Bunsen-Ges. Phys.
Chem. 1998, 102, 716-722.
(32) Troe, J. Int. J. Chem. Kinet. 2001, 33, 878-889.
(
33) Williams, M. B.; Campuzano-Jost, P.; Bauer, D.; Hynes, A. J. Chem.
Acknowledgment. This work is supported by a Grant-in-
Aid for the priority research field “Radical Reactions” from the
Ministry of Education of Japan. S.A. thanks the Japan Society
for Promotion of Science for a fellowship.
Phys. Lett. 2001, 344, 61-67.
34) Barnes, I.; Bastian, V.; Becker, K. H.; Overath, R. D. Int. J. Chem.
(
Kinet. 1991, 23, 579-591.
(35) Diaz-de-Mera, Y.; Aranda, A.; Rodriguez, D.; Lopez, R.; Cabanas,
B.; Martinez, E. J. Phys. Chem. A 2002, 106, 8627-8633.
(
(
36) Donahue, N. M. J. Phys. Chem. A 2001, 105, 1489-1497.
37) Smith, I. W. M.; Ravishankara, A. R. J. Phys. Chem. A 2002, 106,
References and Notes
(1) Finlayson-Pitts, B. J.; Pitts, J. N. Chemistry of the Upper and Lower
4798-4807.
Atmosphere; Academic Press: San Diego, CA, 1999.
(38) Gilles, M. K.; Polak, M. L.; Lineberger, W. C. J. Chem. Phys. 1992,
(
2) Aneja, V. P. J. Air Waste Manage. Assoc. 1990, 40, 469-476.
9
6, 8012-8020.
(3) Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G.
(
39) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics;
John Wiley and Sons: New York, 1998.
40) Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G.
Nature 1987, 326, 655-661.
41) Andreae, M. O.; Crutzen, P. J. Science 1997, 276, 1052-1058.
Nature 1987, 326, 655-661.
4) Houghton, J. T.; Ding, Y.; Griggs, D. J.; Noguer, M.; van der
Linden, P. J.; Xiaosu, D.; Maskell, K.; Johnson, C. A. Climate Change
001: The Scientific Basis; Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate Change
IPCC); Cambridge University Press: New York, 2001 (ISBN: 05210
4956 2001).
5) Ravishankara, A. R.; Rudich, Y.; Talukdar, R.; Barone, S. B. Philos.
Trans. R. Soc. London, Ser. B 1997, 352, 171-181.
(
(
2
(
(
(42) Wallington, T. J.; Atkinson, R.; Winer, A. M.; Pitts, J. N., Jr. J.
Phys. Chem. 1986, 90, 5293-5396.
(43) Butkovskaya, N. I.; Le Bras, G. J. Phys. Chem. 1994, 98, 2582-
2591.
1
(