10484 J. Phys. Chem. A, Vol. 108, No. 47, 2004
Dubowski et al.
much longer residence time, of the order of several seconds.
This discrepancy between simulations and experiments, and the
long residence time suggested by the latter, suggests that
chemisorption (e.g., through the formation of a π complex) plays
a significant role in these heterogeneous processes. Both the
van der Waals attraction, which leads to multiple “encounters”
of ozone with the surface during a collision, and the chemi-
sorption likely contribute to the rapid oxidation of the SAM
relative to what is expected based on analogous gas-phase
reactions. For example, in urban atmospheres, where terminal
alkenes account for a significant fraction of the unsaturated
compounds, ozone levels are on the order of 80 ppb. On the
basis of the values of B and ks obtained in the present study, an
initial oxidation rate for such thin alkene films is calculated
(13) Lai, C. C.; Yang, S. H.; Finlayson-Pitts, B. J. Langmuir 1994, 10,
4
637.
14) de Gouw, J. A.; Lovejoy, E. R. Geophys. Res. Lett. 1998, 25, 931.
15) Wadia, Y.; Tobias, D. J.; Stafford, R.; Finlayson-Pitts, B. J.
Langmuir 2000, 16, 9321.
(
(
(
16) Moise, T.; Rudich, Y. J. Geophys. Res. 2000, 105, 14667.
(17) Thomas, E. R.; Frost, G. J.; Rudich, Y. J. Geophys. Res. 2001,
1
06, 3045.
18) Morris, J. W.; Davidovits, P.; Jayne, J. T.; Jimenez, J. L.; Shi, Q.;
Kolb, C. E.; Worsnop, D. R.; Barney, W. S.; Cass, G. Geophys. Res. Lett.
002, 29.
19) Smith, G. D.; Woods, E.; DeForest, C. L.; Baer, T.; Miller, R. E.
(
2
(
J. Phys. Chem. A 2002, 106, 8085.
(20) Moise, T.; Rudich, Y. J. Phys. Chem. A 2002, 106, 6469.
(
21) Eliason, T. L.; Aloisio, S.; Donaldson, D. J.; Cziczo, D. J.; Vaida,
V. Atmos. EnViron. 2003, 37, 2207.
22) Mmereki, B. T.; Donaldson, D. J. J. Phys. Chem. A 2003, 107,
1038.
(23) Thornberry, T.; Abbatt, J. P. D. Phys. Chem. Chem. Phys. 2004, 6,
4.
(
1
8
5
-
4
-1
(
using eq XI) to be on the order of 5 × 10 molecules s per
surface site, indicating a lifetime for the SAM of about 0.6 h.
However, considering a typical rate constant for the reaction
(
24) Vieceli, J.; Ma, O. L.; Tobias, D. J. J. Chem. Phys. A 2004, 108,
806.
(25) Usher, C. R.; Michel, A. E.; Grassian, V. H. Chem. ReV. 2003,
103, 4883.
3
-
17
3
of ozone with gaseous aliphatic alkene of about 1 × 10 cm
-
1 -1
molecule
s
(e.g., 1-butene), a lifetime for gas-phase terminal
(26) Uosaki, K.; Quayum, M. E.; Nihonyanagi, S.; Kondo, T. Langmuir
alkenes of about 15 h is obtained. It should be noted that this
rapid oxidation of unsaturated SAMs on surfaces could also
lead to artifacts in sampling such organics on particles under
2
004, 20, 1207.
(27) P o¨ schl, U.; Letzel, T.; Schauer, C.; Niessner, R. J. Phys. Chem. A
2001, 105, 4029.
66
(28) Diamond, M. L.; Gingrich, S. E.; Fertuck, K.; McCarry, B. E.; Stern,
G. A.; Billeck, B.; Grift, B.; Brooker, D.; Yager, T. D. EnViron. Sci. Technol.
000, 34, 2900.
some conditions, as has been observed for PAH, for example.
Despite their importance in the atmosphere, heterogeneous
reactions on organic aerosols are not yet considered in most
atmospheric models. This is mainly due to the large diversity
of organic species present in atmospheric aerosols as well as a
significant lack of information regarding the kinetics and
mechanisms of such reactions. This study demonstrates the
importance of real-time monitoring of reactions at surfaces
involved in such heterogeneous reactions and the potential of
using both ATR-FTIR and MD simulations to enhance our
understanding of these important surface processes.
2
(29) Gingrich, S. E.; Diamond, M. L.; Stern, G. A.; McCarry, B. E.
EnViron. Sci. Technol. 2001, 35, 4031.
30) Finlayson-Pitts, B. J.; Wingen, L. M.; Sumner, A. L.; Syomin, D.;
Ramazan, K. A. Phys. Chem. Chem. Phys. 2003, 5, 223.
31) Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92.
(
(
(32) DeMore, W. B.; Sander, S. P.; Golden., D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
M. J. Chemical Kinetics and Photochemical Data for Use in Stratospheric
Modeling, EValuation No. 12; Jet Propulsion Laboratory: Pasadena, CA,
1997; Vol. JPL Publ. No. 97-4.
(33) Harrick, N. J. Internal Reflection Spectroscopy; Interscience
Publishers: New York, 1967.
(
(
(
34) Ulman, A. ACS Symp. Ser. 1991, No. 447, 144.
35) Mar, W.; Klein, M. L. Langmuir 1994, 10, 188.
36) Ulman, A. Chem. ReV. 1996, 96, 1533.
Acknowledgment. We are grateful to the National Science
Foundation for support of a Collaborative Research in Chemistry
award (CHE-0209719) and an Environmental Molecular Sci-
ences Institute (CHE-0431512) under which this research was
carried out, Professor Jim Rutledge for assistance with the
contact angle measurements, and Lee Moritz and Jorg Meyer
for technical assistance. S.A.N. thanks the Research Corporation
for a Research Innovation Award.
(37) Allara, D. L.; Atul N. P.; F., R. Langmuir 1995, 11, 2357.
(38) Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidseyi, C. E. D. J.
Am. Chem. Soc. 1987, 109, 3559.
(
39) Tobias, D. J.; Tu, K.; Klein, M. L. J. Chem. Phys. 1997, 94,
482.
(40) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.;
1
Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-
McCarthy, D. J.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.;
Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux,
B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.;
Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem B 1998, 102,
3586.
References and Notes
(41) Meerts, W. L.; Stolte, S.; Dymanus, A. Chem. Phys. 1977, 19, 467.
(42) Mack, K. M.; Muenter, J. S. J. Chem. Phys. 1977, 66, 5278.
(43) Trambarulo, R.; Gosh, S. N.; Burrus, C. A.; Gordy, W. J. Chem.
(1) Change Climate 2001: The Scientific Basis; Houghton, J. T., Ding,
Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K.,
Johnson, C. A., Eds.; Intergovernmental Panel on Climate Change,
Cambridge University Press: Cambridge, 2001.
Phys. 1953, 21, 851.
44) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.
45) Martyna, G. J.; Tuckerman, M. E.; Tobias, D. J.; Klein, M. L. Mol.
(
(
2) Ramanathan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Science
001, 294, 2119.
3) Finlayson-Pitts, B. J.; Pitts, J. N., Jr. Chemistry of the Upper and
2
(
(
Phys. 1996, 87, 1117.
(46) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. C. J. Comput. Chem.
1977, 23, 327.
Lower Atmosphere: Theory, Experiments and Applications; Academic
Press: San Diego, 2000.
(
4) Jacobson, M. C.; Hansson, H. C.; Noone, K. J.; Charlson, R. J.
ReV. Geophys. 2000, 38, 267.
5) Murphy, D. M.; Thomson, D. S.; Mahoney, T. M. J. Science 1998,
82, 1664.
(47) Andersen, H. C. J. Comput. Chem. 1983, 52, 24.
(48) Roeges, N. P. G. A Guide to the Complete Interpretation of Infrared
Spectra of Organic Structures; John Wiley & Sons: New York, 1994.
(49) Flinn, D. H.; Guzonas, D. A.; Yoon, R. H. Colloids Surf., A 1994,
87, 163.
(50) Angst, D. L.; Simmons, G. W. Langmuir 1991, 7, 2236.
(51) Maoz, R.; Sagiv, J. J. Colloid Interface Sci. 1984, 100, 465.
(52) Netzer, L.; Iscovici, R.; Sagiv, J. Thin Solid Films 1983, 100, 67.
(53) Wasserman, S. R.; Tao, Y. T.; Whitesides, G. M. Langmuir 1989,
5, 1074.
(54) Dordi, B.; Schonherr, H.; Vancso, G. J. Langmuir 2003, 19, 5780.
(55) Banga, R.; Yarwood, J.; Morgan, A. M.; Evans, B.; Kells, J.
Langmuir 1995, 11, 4393.
(56) Banga, R.; Yarwood, J.; Morgan, A. M.; Evans, B.; Kells, J. Thin
Solid Films 1996, 285, 261.
(
2
(
(
6) Husar, R. B.; Shu, W. R. J. Appl. Meteorol. 1975, 14, 1558.
7) Tervahattu, H.; Hartonen, K.; Kerminen, V.-M.; Kupiainen, K.;
Aarnio, P.; Koskentalo, T.; Tuck, A. F.; Vaida, V. J. Geophys. Res. 2002,
1
07, AAAc1.
(8) Tervahattu, H.; Juhanoja, J.; Kupiainen, K.J. Geophys. Res. 2002,
1
07, Art. No. 4319.
(
9) Rudich, Y. Chem. ReV. 2003, 103, 5097.
10) Weingartner, E.; Burtscher, H.; Baltensperger, U. Atmos. EnViron.
997, 31, 2311.
(
1
(
11) Atkinson, R.; Arey, J. Atmos. EnViron. 2003, 37, S197.
(12) Atkinson, R.; Arey, J. Chem. ReV. 2003, 103, 4605.