10.1002/anie.201710017
Angewandte Chemie International Edition
COMMUNICATION
agree well with the blue-shift tendency of UOP spectra in crystal.
Therefore, it is speculated that the inducement of cations play a
critical role for colorful UOP in organic ionic crystals.
Keywords: crystal engineering • ultralong phosphorescence •
organic ionic crystal • gas sensing
[1]
a) Y. Li, M. Gecevicius, J. Qiu, Chem. Soc. Rev. 2016, 45, 2090-
2136; b) T. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M.
Bessodes, D. Gourier, C. Richard, D. Scherman, J. Am. Chem.
Soc. 2011, 133, 11810-11815; c) T. Maldiney, A. Bessiere, J.
Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P.
Dorenbos, M. Bessodes, D. Gourier, D. Scherman, C. Richard,
Nat. Mater. 2014, 13, 418-426.
In light of the visual UOP color change within AHT crystal, as
well as the intrinsic volatility of ammonia gas, a chemo-sensor
based on TPA powder was conducted for ammonia gas sensing
under ambient conditions. As shown in Figure 5a, untreated TPA
powder showed visible yellow UOP after irradiation by a 365 nm
lamp. When the TPA powder was fumed by ammonia gas, with
exposure time ranging from 10 to 60 min, UOP color of the sample
shifted blue-green, correspondingly, phosphorescence spectra
was blue-shifted from 520 to 506 nm (Figure 5b). Additionally,an
emission band at around 390 nm disappeared gradually with the
prolonged fuming time. From PXRD analysis, it is worthy to note
that the sample transformed into AHT salt and further evolved into
diammonium terephthalate salt, providing another simple method
to obtain the AHT phosphor (Figure 5a). Interestingly, the yellow
UOP from TPA powders could be recovered when the fumed
sample was treated with hydrogen chloride gas for 7 h, which was
confirmed by PXRD and phosphorescent spectra (Figure 5). With
prolonged fuming time, the sample returned to TPA and NH4Cl,
and the original raw TPA powder phosphorescence spectrum
profile was recovered. Furthermore, this type of gas probe was
reversible and recyclable, whose sensing performance can be
repeated for more than four times (Figure S7).
[2]
[3]
K. Van den Eeckhout, P. F. Smet, D. Poelman, Materials 2010,
3, 2536-2566.
a) S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W. W.
Xiong, L. Li, Z. An, W. Huang, Adv. Mater. 2017, 29, 1701244;
b) W. Zhao, Z. He, Jacky W. Y. Lam, Q. Peng, H. Ma, Z. Shuai,
G. Bai, J. Hao, B. Z. Tang, Chem 2016, 1, 592-602; c) Y. Xie,
Y. Ge, Q. Peng, C. Li, Q. Li, Z. Li, Adv. Mater. 2017, 29,
1606829; d) Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G.
Liang, Z. Shuai, B. Z. Tang, Nat. Commun. 2017, 8, 416; e) H.
Ma, W. Shi, J. Ren, W. Li, Q. Peng, Z. Shuai, J. Phys. Chem.
Lett. 2016, 7, 2893-2898; f) Z. Yang, Z. Mao, X. Zhang, D. Ou,
Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y. C. Wu, P. Y.
Lu, A. Lien, M. R. Bryce, Angew. Chem. Int. Ed. 2016, 55, 2181-
2185; g) Y. Shoji, Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto,
N. Tanaka, J. Seino, H. Nakai, T. Fukushima, J. Am. Chem. Soc.
2017, 139, 2728-2733; h) R. Gao, D. Yan, Chem. Commun.
2017, 53, 5408-5411; i) S. Xu, R. Chen, C. Zheng, W. Huang,
Adv. Mater. 2016, 28, 9920-9940; j) M. Baroncini, G. Bergamini,
P. Ceroni, Chem. Commun. 2017, 53, 2081-2093; k) S.
Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 10988-
11003.
a) Y. Gong, L. Zhao, Q. Peng, D. Fan, W. Z. Yuan, Y. M. Zhang,
B. Z. Tang, Chem. Sci. 2015, 6, 4438-4444; b) Y. Gong, G.
Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z. Tang,
Adv. Mater. 2015, 27, 6195-6201; c) Z. Mao, Z. Yang, Y. Mu, Y.
Zhang, Y. F. Wang, Z. Chi, C. C. Lo, S. Liu, A. Lien, J. Xu,
Angew. Chem. Int. Ed. 2015, 54, 6270-6273.
a) S. Hirata, M. Vacha, J. Phys. Chem. Lett. 2016, 7, 1539-
1545; b) S. Hirata, M. Vacha, Adv. Optical Mater. 2017, 5,
1600996; c) Y. Katsurada, S. Hirata, K. Totani, T. Watanabe, M.
Vacha, Adv. Optical Mater. 2015, 3, 1726-1737; d) S. Hirata, K.
Totani, J. X. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T.
Watanabe, C. Adachi, Adv. Funct. Mater. 2013, 23, 3386-3397.
[4]
[5]
In summary,
a
new material sourse of ultralong
phosphorescence, organic ionic crystals, was formulated and
prepared through ionic bonding in water or through gas fuming.
With cationic variations from Na+, NH4+ to K+, the UOP color could
be intentionally tuned from sky blue to yellow green. The emission
lifetimes of these phosphors exceed 504 ms. In light of both
experimental and simulated results, it is proposed that this unique
ionic bonding can promote an ordered molecular arrangement to
influence molecular aggregation, which in turn can enhance
ultralong phosphorescence. More importantly, reversible and
repeatable ultralong phosphorescence was observed through the
alternating application of fuming gases (ammonia and hydrogen
chloride), demonstrating the potential for visual ammonic or
hydrogen chloride gases sensing. This work not only provides a
concise, as well as green synthetic approach to expanding the
scope of organic luminescent materials with UOP features, but
also helps to pave the way toward potential applications ranging
from anti-counterfeiting to visual gas sensing.
[6] a) X. Yang, D. Yan, Chem. Sci. 2016, 7, 4519-4526; b) H. Mieno,
R. Kabe, N. Notsuka, M. D. Allendorf, C. Adachi, Adv. Optical
Mater. 2016, 4, 1015-1021; c) X. Yang, D. Yan, Adv. Optical
Mater. 2016, 4, 897-905.
[7]
a) Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang,
H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685-
690; b) E. Lucenti, A. Forni, C. Botta, L. Carlucci, C. Giannini,
D. Marinotto, A. Previtali, S. Righetto, E. Cariati, J. Phys. Chem.
Lett. 2017, 8, 1894-1898.
a) M. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem.
Int. Ed. 2014, 53, 11177-11181; b) O. Bolton, K. Lee, H. J. Kim,
K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205-210; c) Y. Deng, D.
Zhao, X. Chen, F. Wang, H. Song, D. Shen, Chem. Commun.
2013, 49, 5751-5753; d) S. Kuno, H. Akeno, H. Ohtani, H.
Yuasa, Phys. Chem. Chem. Phys. 2015, 17, 15989-15995.
a) E. Schulman, R. Parker, J. Phys. Chem. 1977, 81, 1932-
1939; b) G. Bergamini, A. Fermi, C. Botta, U. Giovanella, S. Di
Motta, F. Negri, R. Peresutti, M. Gingras, P. Ceroni, J. Mater.
Chem. C 2013, 1, 2717-2724; c) S. Hirata, Adv. Optical Mater.
2017, 5, 1700116.
[8]
Acknowledgements
[9]
This work is supported by the National Natural Science
Foundation of China (51673095, 61505078 and 21503118),
National Basic Research Program of China (973 Program, No.
2015CB932200) the Natural Science Foundation (55135026), the
Natural Science Fund for Colleges and Universities
(17KJB430020) and "High-Level Talents in Six Industries" (XCL-
025) of Jiangsu Province.
[10] S. H. Yalkowsky, Y. He, P. Jain, Handbook of Aqueous
Solubility Data Second Edition. CRC Press, Boca Raton, FL,
2010, p. 459.
[11] a) A. P. Demchenko, Luminescence 2002, 17, 19-42; b) Z. Hu,
C. J. Margulis, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 831-836.
[12] a) K. M. Lee, W. Y. Cheng, C. Y. Chen, J. J. Shyue, C. C. Nieh,
C. F. Chou, J. R. Lee, Y. Y. Lee, C. Y. Cheng, S. Y. Chang, T.
C. Yang, M. C. Cheng, B. Y. Lin, Nat. Commun. 2013, 4, 1544.
This article is protected by copyright. All rights reserved.