R. S. Jensen et al. / Tetrahedron Letters 46 (2005) 8645–8647
8647
nitriles in good to high yields (entries 2–10). The high
reactivity of sterically congested 2,4,6-trimethylphenyl
bromide was of particular interest, giving the cyanation
product in 83% yield (entry 11). Similarly, o-substituted
phenyl bromides were converted to the corresponding
nitriles in good yields (entries 12–14). The excellent con-
version of 1-bromo-4-nitrobenzene was particularly
gratifying (entry 8). In comparison, identical reaction
2. (a) Chambers, M. R. I.; Widdowson, D. A. J. Chem. Soc.,
Perkin Trans. 1 1989, 1265; (b) Cassar, L.; Foa, M. J.
Organomet. Chem. 1979, 173, 335; (c) Cassar, L. J.
Organomet. Chem. 1973, 54, C57.
3
. Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc.
003, 125, 2890.
. (a) Chidambaram, R. Tetrahedron Lett. 2004, 45, 1441;
b) Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41,
271; (c) Okano, T.; Iwahara, M.; Kiji, J. Synlett 1998,
243.
2
4
(
3
conditions employing PPh or dppf as ligand as opposed
3
to DPCB provided 45% and 46% conversion of the
nitro-arene, respectively. 2-Bromonaphthalene was
sufficiently reactive (entry 15), but the reactivity of 2-
bromothiophene was poor (entry 16). 1,4-Dibromoben-
zene was converted to 1,4-dicyanobenzene in 85% yield
5. (a) Okano, M.; Amano, M.; Takagi, K. Tetrahedron Lett.
1998, 39, 3001; (b) Ramnauth, J.; Bhardwaj, N.; Renton,
P.; Rhakit, S.; Maddaford, S. Synlett 2003, 2237; (c)
Tschaen, D. M.; Desmond, R.; King, A. O.; Forin, M. C.;
Pipik, B.; King, S.; Verhoeven, T. R. Synth. Commun.
1
994, 24, 887; (d) Marcantonio, K. M.; Frey, L. F.; Liu,
(
entry 17). The reaction of phenyl iodide with a formyl
Y.; Chen, Y.; Strine, J.; Phenix, B.; Wallace, D. J.; Chen,
C.-Y. Org. Lett. 2004, 6, 3723; (e) Maligres, P. E.; Waters,
M. S.; Fleitz, F.; Askin, D. Tetrahedron Lett. 1999, 40,
group was also successful (entry 18). On the other hand,
aryl chlorides were unreactive under these conditions,
except for 1-chloro-4-nitrobenzene, which was con-
verted to the corresponding nitrile in 15% yield (entry
8
193.
6. Jiang, B.; Kan, Y.; Zhang, A. Tetrahedron 2001, 57,
1581.
1
9). Consequently, 1-bromo-4-chlorobenzene reacted
only at the bromide position to give 4-chlorobenzonitrile
in 35% yield (entry 20). An attempt to convert 4-fluoro-
toluene to the corresponding nitrile was unsuccessful,
giving a complex mixture containing neither the starting
material nor the desired product.
7. (a) Okano, T.; Kiji, J.; Toyooka, Y. Chem. Lett. 1998, 425;
(
3
b) Cassar, L.; Foa, M. J. Organomet. Chem. 1979, 173,
35.
8
9
. Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem., Int.
Ed. 2003, 42, 1661.
. Sundermeier, M.; Mutyala, S.; Zapf, A.; Spannenberg, A.;
Beller, M. J. Organomet. Chem. 2003, 684, 50.
In summary, DPCB proved to be an effective ligand for
palladium-catalyzed cyanation of aryl bromides. The
ligand is stable toward air and moisture, and is conve-
niently stored and handled under ambient conditions.
Furthermore, the catalytic reaction does not require
the rigorous exclusion of oxygen or water, and all
reagents and solvents can be used as commercially
supplied. Although there are some limitations, it does
provide a convenient and general access to benzonitriles
fromaryl bromides.
1
0. Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004,
388.
1
11. (a) Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.;
Higuchi, T. J. Am. Chem. Soc. 1981, 103, 4587; (b)
Yoshifuji, M.; Shibayama, K.; Inamoto, N.; Matsushita,
T.; Nishimoto, K. J. Am. Chem. Soc. 1983, 105, 2495; (c)
Yoshifuji, M. J. Organomet. Chem. 2000, 611, 210.
1
2. (a) Ozawa, F.; Yoshifuji, M. C. R. Chimie 2004, 7, 747; (b)
Toyota, K.; Masaki, K.; Abe, T.; Yoshifuji, M. Chem.
Lett. 1995, 221; (c) Ikeda, S.; Ohhata, F.; Miyoshi, M.;
Tanaka, R.; Minami, T.; Ozawa, F.; Yoshifuji, M. Angew.
Chem., Int. Ed. 2000, 39, 4512; (d) Ozawa, F.; Yamamoto,
S.; Kawagishi, S.; Hiraoka, M.; Ikeda, S.; Minami, T.; Ito,
S.; Yoshifuji, M. Chem. Lett. 2001, 972; (e) Minami, T.;
Okamoto, H.; Ikeda, S.; Tanaka, R.; Ozawa, F.;
Yoshifuji, M. Angew. Chem., Int. Ed. 2001, 40, 4501; (f)
Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.;
Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124,
Acknowledgements
This work was supported in part by Grants-in-Aid for
Scientific Research fromthe Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan (13304049,
1
0968; (g) Gajare, A. S.; Toyota, K.; Yoshifuji, M.;
1
5036206, 16033207). A.S.G. is grateful to the Japan
Ozawa, F. Chem. Commun. 2004, 1994; (h) Gajare, A. S.;
Toyota, K.; Yoshifuji, M.; Ozawa, F. J. Org. Chem. 2004,
Society for the Promotion of Science for a Postdoctoral
Fellowship for Foreign Researchers.
6
9, 6504; (i) Gajare, A. S.; Jensen, R. S.; Toyota, K.;
Yoshifuji, M.; Ozawa, F. Synlett 2005, 144.
3. (a) Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578; (b)
Mathey, F. J. Organomet. Chem. 2002, 646, 15; (c)
Yoshifuji, M. Phosphorus, Sulfur, Silicon Relat. Elem.
2002, 177, 1827; (d) Weber, L. Angew. Chem., Int. Ed.
2002, 41, 563.
1
References and notes
1
. Takagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Chem.
Lett. 1973, 471.