10.1002/adsc.202001063
Advanced Synthesis & Catalysis
with Na2SO4, and concentrated under reduced pressure to
afford the product, which was purified by recrystallization
from a CH2Cl2/Et2O mixture.
J.-M. Augereau, H. Gornitzka, F. Benoit-Vicalab,
Bioorg. Med. Chem. 2016, 24, 3075-3082
[7] a) R Visbal, M. C. Gimeno, Chem. Soc. Rev. 2014, 43,
3551-3574; b) C. A. Smith, M. R. Narouz, P. A.
Lummis, I. Singh, A. Nazemi, C.-H. Li, C. M. Crudden,
Chem. Rev. 2019, 119, 4986−5056; c) S. Liu, S. Xu, J.
Wang, F. Zhao, H. Xia, Y. Wang, J. Coord. Chem.
2017, 70, 584-599; d) H.-S. Chen, W.-C. Chang, C. Su,
T.-Y. Li, N.-M. Hsu, Y. S. Tingare, C.-Y. Li, J.-H.
Shie, W.-R. Li. Dalton Trans. 2011, 40, 6765-6770; e)
G. J. Barbante, P. S. Francis, C. F. Hogan, P. R.
Kheradmand, D. J. D. Wilson, P. J. Barnard, Inorg.
Chem. 2013, 52, 7448-7459.
General Procedure II: One-pot Synthesis of 2-
Aminopyridines and 2-Aminoquinolines from N-
Heterocyclic Carbenes
To a stirred solution of N-oxide (1 equiv) in MeCN [0.2 M]
pyridine (2 equiv) was added in one portion. The mixture
was cooled to 0 °C and Tf2O (1.5 equiv) was added dropwise.
The resulting mixture was stirred for 15 min at 0°C and 8 h
at rt. Then, piperidine (10 equiv) was added dropwise at rt
and stirring was continued for 6 h at the same temperature.
The reaction mixture was concentrated under reduced
pressure and the crude product was purified by flash column
chromatography on silica gel using gradient mixtures of
CH2Cl2 and MeOH (50:1 to 10:1) as eluents.
[8] S. E. Wengryniuk, A. Weickgenannt, C. Reiher, N. A.
Strotman, K. Chen, M. D. Eastgate, P. S. Baran, Org.
Lett. 2013, 15, 792-795
Acknowledgements
[9] a) V. Khlebnikov, A. Meduri, H. Mueller-Bunz, B.
Milani, M. Albrecht, New J. Chem. 2012, 36, 1552-
1555; b) T. Simler, A. A. Danopoulos, P. Braunstein,
Dalton Trans. 2017, 46, 5955-5964.
D.I.B and A.V.K thank RFBR for the partial financial support
(project number 19-33-90280) M.A.Y. thanks RFBR for partial
financial support (project number 20-03-00456).
[10] a) Y. Wang, L. Zhang, Synthesis 2015 47, 389-305; b)
A. R. Katritzky, J. N. Lam, Heterocycles 1992, 33,
1011-1049; c) D. L. Comins, S. O’Connor, Adv.
Heterocycl. Chem. 1988, 44, 199-267.
References
[1] H. V. Huynh, Chem. Rev. 2018, 118, 9457-9492.
[2] a) O. Hollóczki, Chem. Eur. J. 2020, 26, 4885-4894.
b) D. M. Flanigan, F. Romanov-Michailidis, N. A.
White, T. Rovis, Chem. Rev. 2015, 115, 9307-9387.
[11] a) C. Copéret, H. Adolfsson, T.-A. V. Khuong, A. K.
Yudin, K. B. Sharpless. Org. Chem. 1998, 63, 1740-
1741; b) O. V. Larionov, D. Stephens, A. M. Mfuh, H.
D. Arman, A. S. Naumova, G. Chavez, B. Skenderi,
Org. Biomol. Chem., 2014, 12, 3026-3036.
[3] a) A. Doddi, M. Peters, M. Tamm, Chem. Rev. 2019,
119, 6994-7112; b) V. Nesterov, D. Reiter, P. Bag, P.
Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev.
2018, 118, 9678-9842.
[12] a) D. I. Bugaenko, A. V. Karchava, M. A. Yurovskaya,
Russ. Chem. Rev. 2018, 87, 272-301 and references
therein; b) A. T.Londregan, S. Jennings, L. Wei, Org.
Lett. 2010, 12, 5254-5257; c) J. Yin, B. Xiang, M. A.
Huffman, C. E. Raab, I. W. Davies, J. Org. Chem.
2007, 72, 4554-4557; d) D. I. Bugaenko, M. A.
Yurovskaya, A. V. Karchava, J. Org. Chem. 2017, 82,
2136-2149; e) J. M. Keith, J. Org. Chem. 2008, 73,
327-330; f) A. T. Londregan, S. Jennings, L. Wei, Org.
Lett. 2011, 13, 1840-1843; g) P. J. Manley, M. T.
Bilodeau, Org. Lett. 2002, 4, 3127-3129; h) J. W.
Medley, M. Movassaghi, J. Org. Chem. 2009, 74,
1341-1344; i) L. Zhao, L. Hao, Y. Fu, Y. Cheng, G.
Pan, L. Désaubry, P. Yu, D. Wang, Adv. Synth. Cat.
2020, 362, 3841-3845; i) L.‐ Y. Xie, S. Peng, F. Liu,
J.‐ Y. Yi, M. Wang, Z. Tang, X. Xu, W.‐ M. He, Adv.
Synth. Cat. 2020, 360, 4259-4264; k) R. P. Farrell, M.
V. S. Elipe, M. D. Bartberger, J. S. Tedrow, F.
Vounatsos, Org. Lett. 2013, 15, 168-171; l) Y.Nanaji,
S. Kirar, S.V. Pawar, A. K. Yadav, RSC Adv. 2020,10,
7628-7634; m) H. Xiong, A. T. Hoye, K.-H. Fan, X.
Li, J. Clemens, C. L. Horchler, N. C. Lim, G. Attardo,
Org. Lett. 2015, 17, 3726-3729; n) J. M. Keith, J. Org.
Chem. 2010, 75, 2722–2725.
[4] a) A. A. Danopoulos, T. Simler, P. Braunstein, Chem.
Rev. 2019, 119, 3730-3961; b) Q. Zhao, G. Meng, S. P.
Nolan, M. Szostak, Chem. Rev. 2020, 120, 1981-2048;
c) W. A. Herrmann Angew. Chem. Int. Ed. 2002, 41,
1290-1309; d) F. A. Glorius, Top. Organomet. Chem.
2007, 21, 1-20; e) F. E. Hahn, Angew. Chem. 2006, 118,
1374-1378; Angew. Chem. Int. Ed. 2006, 45, 1348-
1352; f) H. Ohmiya, ACS Catal. 2020, 10, 6862-6869.
[5] a) Y.-B. Wang, B.-Y. Liu, Q. Bu, B. Dai, N. Liu, Adv.
Synth. Catal. 2020, 326, 2930-2940; b) E. Peris, R. H.
Crabtree, Coord. Chem. Rev. 2004, 248, 2239-2246; c)
V. M. Chernyshev, E. A. Denisova, D. B. Eremin, V.
P. Ananikov, Chem. Sci. 2020, 11, 6957-6977; c) B. R.
M. Lake, C. E. Willans, Organometallics 2014, 33,
2027-2038; d) U. J. Scheele, M. John, S. Dechert, F.
Meyer, Eur. J. Inorg. Chem. 2008, 373-377; e) V.
Khlebnikov, A. Meduri, H. Mueller-Bunz, B. Milani,
M. Albrecht, New. J. Chem. 2012, 36, 1552-1555.
[6] a) W. Liu, R. Gust, Coord. Chem. Rev. 2016, 329, 191-
213; b) C. Hemmert, A. Fabié, A. Fabre, F. Benoit-
Vical, H. Gornitzka, Eur. J. Med. Chem. 2013, 60, 64-
75; c) M. Mora, M. C. Gimeno, R. Visba, Chem. Soc.
Rev. 2019, 48, 447-462; d) B. K. Rana, A. Nandy, V.
Bertolasi, C. W. Bielawski, K. Das Saha, J. Dinda,
Organometallics 2014, 33, 2544-2548; e) C. Hemmert,
A. P. Ramadani, L. Boselli, Á. F. Álvarez, L. Paloque,
[13] a) H. G. Raubenheimer, S. Cronje, Dalton Trans. 2008,
1265-1272; b) J. A. Cabeza, I. del Ro, E. Prez-Carreno,
M. G. Sánchez-Vega, D. Vázquez-Garca, Angew.
Chem. Int. Ed. 2009, 48, 555-558; c) G. Song, Y.
5
This article is protected by copyright. All rights reserved.