10.1002/adsc.202001211
Advanced Synthesis & Catalysis
DFT study of the reaction has revealed a constraining
ligand pocket formed by the biaryl moiety together
with one of the phospholane phenyl substituents. The
high levels of enantioselectivity observed in reactions
with 1-naphthylboronic acids is determined by a high
exo preference in the reductive elimination. The
protruding phospholane phenyl group allows only
one of the biaryl methoxy groups to coordinate trans
to one of the Pd-aryl bonds. This coordination plays
an important role in restricting the conformational
freedom in the reductive elimination step, blocking
one of the otherwise favoured exo orientations in the
dominating distal pathway. Studies are ongoing to
further optimise the ligand structures, e.g. by
appropriate substitution of the phenyl rings on the
phospholane, and we anticipate that the
computational work outlined here will expedite the
design process.
A. Hendricks, J. W. Johannes, R. W. Johnstone, S. L.
Kazmirski, J. G. Kettle, M. L. Lamb, S. M. Matulis, A.
K. Nooka, M. J. Packer, B. Peng, P. B. Rawlins, D. W.
Robbins, A. G. Schuller, N. Su, W. Yang, Q. Ye, X.
Zheng, J. P. Secrist, E. A. Clark, D. M. Wilson, S. E.
Fawell, A. W. Hird, Nat. Commun. 2018, 9, 5341; b) J.
G. Kettle, S. K. Bagal, S. Boyd, A. J. Eather-Ton, S. M.
Fillery, G. R. Robb, P. A. Raubo (AstraZeneca), WO
2018/206539 A1, 2018.
[5] a) G. Liao, T. Zhou, Q. J. Yao, B. F. Shi, Chem.
Commun. 2019, 55, 8514-8523; b) Y. B. Wang, B. Tan,
Acc. Chem. Res. 2018, 51, 534-547; c) G. Bringmann,
A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J.
Garner, M. Breuning, Angew. Chem., Int. Ed. 2005, 44,
5384-5427.
[6] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett.
1979, 20, 3437-3440.
[7] a) I. P. Beletskaya, F. Alonso, V. Tyurin, Coord. Chem.
Rev. 2019, 385, 137-173; b) I. Hussain, J. Capricho, M.
A. Yawer, Adv. Synth. Catal. 2016, 358, 3320-3349.
Experimental Section
In a glovebox, a 4 mL glass vial was charged with aryl
bromide (0.20-0.40 mmol), boronic acid (1.5 equiv.),
Pd(OAc)2 (5 mol%), L8 (6 mol%) and a tumble stirrer disc.
Acetonitrile (4.5 mL/mmol) was added followed by 6 M aq.
K2CO3 soln. (0.5 mL/mmol, 3 equiv.). The vial was sealed
and the reaction stirred at 25 °C for the stated time. The
vial was taken out of the glovebox and diluted with MTBE
(10 mL) and H2O (10 mL) and transferred to a separating
funnel. The layers were separated and the aqueous layer
extracted with MTBE (10 mL). The combined organics
were washed with 2 M aq. NaOH soln (2 x 10 mL) and
20% aq. NaCl soln. (10 mL), then dried (phase separator)
and concentrated under reduced pressure. The residue was
dryloaded onto SiO2 and purified by flash column
chromatography to give the desired biaryl product.
[8] a) H. Yang, J. Sun, W. Gu, W. Tang, J. Am. Chem. Soc.
2020; b) W. Ji, H.-H. Wu, J. Zhang, ACS Catal. 2020,
10, 1548-1554; c) D. Shen, Y. Xu, S. L. Shi, J. Am.
Chem. Soc. 2019, 141, 14938-14945; d) N. D. Patel, J.
D. Sieber, S. Tcyrulnikov, B. J. Simmons, D. Rivalti, K.
Duvvuri, Y. Zhang, D. A. Gao, K. R. Fandrick, N.
Haddad, K. S. Lao, H. P. R. Mangunuru, S. Biswas, B.
Qu, N. Grinberg, S. Pennino, H. Lee, J. J. Song, B. F.
Gupton, N. K. Garg, M. C. Kozlowski, C. H.
Senanayake, ACS Catal. 2018, 8, 10190-10209; e) R.
Haraguchi, S. Hoshino, T. Yamazaki, S.-i. Fukuzawa,
Chem. Commun. 2018, 54, 2110-2113; f) D. Zhang, Q.
Wang, Coord. Chem. Rev. 2015, 286, 1-16; g) Y. Zhou,
X. Zhang, H. Liang, Z. Cao, X. Zhao, Y. He, S. Wang,
J. Pang, Z. Zhou, Z. Ke, L. Qiu, ACS Catal. 2014, 4,
1390-1397; h) Y. Zhou, S. Wang, W. Wu, Q. Li, Y. He,
Y. Zhuang, L. Li, J. Pang, Z. Zhou, L. Qiu, Org. Lett.
2013, 15, 5508-5511; i) S. Wang, J. Li, T. Miao, W.
Wu, Q. Li, Y. Zhuang, Z. Zhou, L. Qiu, Org. Lett. 2012,
14, 1966-1969; j) T. Yamamoto, Y. Akai, Y. Nagata, M.
Suginome, Angew. Chem., Int. Ed. 2011, 50, 8844-
8847; k) Y. Uozumi, Y. Matsuura, T. Arakawa, Y. M.
Yamada, Angew. Chem., Int. Ed. 2009, 48, 2708-2710;
l) K. Sawai, R. Tatumi, T. Nakahodo, H. Fujihara,
Angew. Chem., Int. Ed. 2008, 47, 6917-6919; m) A.
Bermejo, A. Ros, R. Fernández, J. M. Lassaletta, J. Am.
Chem. Soc. 2008, 130, 15798-15799; n) M. Genov, A.
Almorin, P. Espinet, Chemistry 2006, 12, 9346-9352;
o) A. N. Cammidge, K. V. L. Crépy, Tetrahedron 2004,
60, 4377-4386.
Acknowledgements
LB is a fellow of the AstraZeneca postdoc programme. CS
acknowledges support from KLOSS Akademi Ut (INNOV
2015/29) and Vinnova (grant no. 2016-02110).
References
[1] a) M. M. Pereira, M. J. Calvete, R. M. Carrilho, A. R.
Abreu, Chem. Soc. Rev. 2013, 42, 6990-7027; b) Y. Li,
F. Kwong, W. Yu, A. Chan, Coord. Chem. Rev. 2007,
251, 2119-2144; c) W. Tang, X. Zhang, Chem. Rev.
2003, 103, 3029-3070.
[2] a) A. Zask, J. Murphy, G. A. Ellestad, Chirality 2013,
25, 265-274; b) G. Bringmann, T. Gulder, T. A. M.
Gulder, M. Breuning, Chem. Rev. 2011, 111, 563-639.
[9] a) B. P. Fors, D. A. Watson, M. R. Biscoe, S. L.
Buchwald, J. Am. Chem. Soc. 2008, 130, 13552-13554;
b) T. E. Barder, S. D. Walker, J. R. Martinelli, S. L.
Buchwald, J. Am. Chem. Soc. 2005, 127, 4685-4696; c)
J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald,
J. Am. Chem. Soc. 1999, 121, 9550-9561; d) D. W. Old,
J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998,
120, 9722-9723.
[3] a) P. W. Glunz, Bioorg. Med. Chem. Lett. 2018, 28, 53-
60; b) S. R. LaPlante, L. D. Fader, K. R. Fandrick, D. R.
Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, P. J.
Edwards, J. Med. Chem. 2011, 54, 7005-7022; c) J.
Clayden, W. J. Moran, P. J. Edwards, S. R. LaPlante,
Angew. Chem., Int. Ed. 2009, 48, 6398-6401.
[4] a) A. E. Tron, M. A. Belmonte, A. Adam, B. M. Aquila,
L. H. Boise, E. Chiarparin, J. Cidado, K. J. Embrey, E.
Gangl, F. D. Gibbons, G. P. Gregory, D. Hargreaves, J.
7
This article is protected by copyright. All rights reserved.