Organic Letters
Letter
J.; Lee, Y.; Ryu, J.; Kim, J.; Lee, Y.; Jung, Y.; Chang, S. J. Am. Chem. Soc.
2014, 136, 1132. (e) Zhang, S.-Y.; Li, Q.; He, G.; Nack, W. A.; Chen, G.
J. Am. Chem. Soc. 2015, 137, 531. (f) Dastbaravardeh, N.; Toba, T.;
Farmer, M. E.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 9877. (g) Sarkar,
D.; Gulevich, A. V.; Melkonyan, F. S.; Gevorgyan, V. ACS Catal. 2015, 5,
6792.
(4) Kakiuchi, F.; Kochi, T.; Murai, S. Synlett 2014, 25, 2390.
(5) Selected recent examples of our ruthenium-catalyzed C−H
functionalization: (a) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai,
S. J. Am. Chem. Soc. 2003, 125, 1698. (b) Kakiuchi, F.; Matsuura, Y.; Kan,
S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936. (c) Kitazawa, K.;
Kochi, T.; Sato, M.; Kakiuchi, F. Org. Lett. 2009, 11, 1951. (d) Kitazawa,
K.; Kotani, M.; Kochi, T.; Langeloth, M.; Kakiuchi, F. J. Organomet.
Chem. 2010, 695, 1163. (e) Kitazawa, K.; Kochi, T.; Nitani, M.; Ie, Y.;
Aso, Y.; Kakiuchi, F. Chem. Lett. 2011, 40, 300. (f) Ogiwara, Y.; Miyake,
M.; Kochi, T.; Kakiuchi, F. Organometallics 2017, 36, 159. See also ref
3b.
acid 14 in 93% yield. Subsequent oxidative cyclization by
K2S2O8 provided biaryl lactone 15 in 72% yield as a single
15
regioisomer. The total synthesis of altertenuol by Abe and co-
workers was achieved in one step from compound 15.14e
In summary, we developed the ruthenium-catalyzed selective
monoarylation of aromatic ketones and esters via cleavage of
unreactive C−O or C−N bonds. The new catalyst system
consisting of 6, CsF, and styrene was particularly effective in the
selective monoarylation. Various arylboronates can be used as
coupling partners for the reaction, and aromatic ketones bearing
two different aryl groups at the ortho positions was synthesized
by further C−O arylation of a monoarylation product. The
catalytic ortho C−O arylation of simple benzoate derivatives was
also achieved for the first time using this catalyst system and
applied to the formal synthesis of altertenuol.
(6) C−O functionalization: (a) Kakiuchi, F.; Usui, M.; Ueno, S.;
Chatani, N.; Murai, S. J. Am. Chem. Soc. 2004, 126, 2706. (b) Ueno, S.;
Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2006, 128,
16516. (c) Kondo, H.; Akiba, N.; Kochi, T.; Kakiuchi, F. Angew. Chem.,
Int. Ed. 2015, 54, 9293.
(7) C−N functionalization: (a) Ueno, S.; Chatani, N.; Kakiuchi, F. J.
Am. Chem. Soc. 2007, 129, 6098. (b) Koreeda, T.; Kochi, T.; Kakiuchi, F.
J. Am. Chem. Soc. 2009, 131, 7238. (c) Koreeda, T.; Kochi, T.; Kakiuchi,
F. Organometallics 2013, 32, 682. (d) Koreeda, T.; Kochi, T.; Kakiuchi,
F. J. Organomet. Chem. 2013, 741−742, 148. See also ref 6c.
(8) C−F functionalization: Kawamoto, K.; Kochi, T.; Sato, M.;
Mizushima, E.; Kakiuchi, F. Tetrahedron Lett. 2011, 52, 5888.
(9) No coupling reaction between substrates with styrene was
observed in any reaction described in this paper.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Full experimental details and characterization data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) Selected examples of direct C−H functionalizations by
trialkylphosphine ruthenium catalysts: (a) Guari, Y.; Sabo-Etienne, S.;
Chaudret, B. J. Am. Chem. Soc. 1998, 120, 4228. (b) Guari, Y.;
Castellanos, A.; Sabo-Etienne, S.; Chaudret, B. J. Mol. Catal. A: Chem.
2004, 212, 77. (c) Grellier, M.; Vendier, L.; Chaudret, B.; Albinati, A.;
Rizzato, S.; Mason, S.; Sabo-Etienne, S. J. Am. Chem. Soc. 2005, 127,
17592. (d) Yi, C. S.; Lee, D. W. Organometallics 2010, 29, 1883.
(e) Kwon, K.-H.; Lee, D. W.; Yi, C. S. Organometallics 2010, 29, 5748.
(f) Walton, J. W.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51,
12166.
(11) A competition experiment of 1 with equimolar of 2c and 2e gave
3c in lower yield than 3e. Similar electronic effects of organoboron
compounds were also observed in ref 7a, c. See the Supporting
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
F.K. is thankful for financial support, in part, by JSPS KAKENHI
Grant Number JP15H05839 in Middle Molecular Strategy and
ACT-C from the Japan Science and Technology Agency (JST),
Japan. H.K. is grateful to the Japan Society for the Promotion of
Science (JSPS) for a Research Fellowship for Young Scienetists
(JP16J02904).
(12) The reaction of 2,6-dimethoxy-3-methylbenzophenone with 2a
was examined but provided a complex mixture, and the regioselectivity
of the C−O arylation could not be determined. The reaction of 4-
methoxy-4-methyl-2-pentanone was also attempted but did not give any
arylation product.
(13) Recently, Snieckus and Zhao reported amide- or ester-directed
C−O functionalizations using our ruthenium catalyst systems: (a) Zhao,
Y.; Snieckus, V. J. Am. Chem. Soc. 2014, 136, 11224. (b) Zhao, Y.;
Snieckus, V. Org. Lett. 2015, 17, 4674. (c) Zhao, Y.; Snieckus, V. Chem.
Commun. 2016, 52, 1681.
(14) (a) Rosett, T.; Sankhala, R. H.; Stickings, C. E.; Taylor, M. E. U.;
Thomas, R. Biochem. J. 1957, 67, 390. (b) Thomas, R. Biochem. J. 1961,
80, 234. (c) Nemecek, G.; Cudaj, J.; Podlech, J. Eur. J. Org. Chem. 2012,
2012, 3863. (d) Thomas, R.; Nemecek, G.; Podlech, J. Nat. Prod. Res.
2013, 27, 2053. (e) Matsukihira, T.; Saga, S.; Horino, Y.; Abe, H.
Heterocycles 2014, 89, 59.
REFERENCES
■
(1) Recent representative reviews of C−H functionalizations: (a) De
Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal.
2014, 356, 1461. (b) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.;
Dong, G. Chem. Soc. Rev. 2015, 44, 7764. (c) Kakiuchi, F.; Kochi, T. Yuki
Gosei Kagaku Kyokaishi 2015, 73, 1099. (d) Zhu, R.-Y.; Farmer, M. E.;
Chen, Y.-Q.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 10578.
(2) Representative reviews and accounts for catalytic C−O
functionalizations: (a) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.
- Eur. J. 2011, 17, 1728. (b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D.
A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev.
2011, 111, 1346. (c) Mesganaw, T.; Garg, N. K. Org. Process Res. Dev.
2013, 17, 29. (d) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem.
2013, 2013, 19. (e) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev.
2014, 43, 8081. (f) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48,
886. (g) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717.
(h) Tobisu, M.; Chatani, N. Top. Curr. Chem. 2016, 374, 41. (i) Zarate,
C.; van Gemmeren, M.; Somerville, R. J.; Martin, R. Adv. Organomet.
Chem. 2016, 66, 143.
(15) Wang, Y.; Gulevich, A. V.; Gevorgyan, V. Chem. - Eur. J. 2013, 19,
15836.
(3) Selected examples of C−H monofunctionalizations: (a) Oi, S.;
Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett.
2001, 3, 2579. (b) Hiroshima, S.; Matsumura, D.; Kochi, T.; Kakiuchi, F.
Org. Lett. 2010, 12, 5318. (c) Zhang, X.-S.; Zhu, Q.-L.; Zhang, Y.-F.; Li,
Y.-B.; Shi, Z.-J. Chem. - Eur. J. 2013, 19, 11898. (d) Kim, H. J.; Ajitha, M.
D
Org. Lett. XXXX, XXX, XXX−XXX