C O M M U N I C A T I O N S
reduced from 1-4 days in the absence of Zn to 1-3 h in its
presence (Table 1 and Table ST1 in the Supporting Information).
(entry 2). Further reduction in the catalyst loading level to 2 mol
% NiCl2(dppp) and 4 mol % dppf provided quantitative yield only
after 7 h (entry 3). Effective borylation could also be achieved with
reduced Zn levels as low as 0.5 equiv (entries 4-6). However,
decreasing the Zn level gave a corresponding decrease in yield.
The borylation of substrates containing aldehydes, ketones, and
pyridines in the presence of Zn is accompanied by side reactions
and will be reported in a scope and limitations manuscript together
with mechanistic studies.
Table 2. Catalyst Screening in the Ni-Catalyzed
Neopentylglycolborylation of Aryl Mesylates Using Zn
convna/yieldb (%)
entry
catalyst (%)
ligand (%)
1 h
2 h
4 h
Acknowledgment. Financial support by the National Science
Foundation (DMR-0548559 and DMR-0520020) and the P. Roy
Vagelos Chair at the University of Pennsylvania is gratefully
acknowledged. We also thank Professor G. A. Molander of the
University of Pennsylvania for reading the final version of the
manuscript and for suggestions.
1
2
3
NiCl2(dppp) (5)
NiCl2(dppp) (5)
NiCl2(dppp) (5)
dppf (10)
PPh3 (10)
PTol3 (10)
100/100
79/79
61/61
-
93/93
83/83
-
100/100
97/97
a Conversion calculated from GC. b Yield determined by GC.
Other mixed-ligand systems can also mediate effective neopen-
tylglycolborylation of aryl mesylates and tosylates (Table 2), though
longer reaction times are needed to obtain maximum yield. With 5
mol % NiCl2(dppp) and 10 mol % dppf, quantitative borylation of
methyl 4-methanesulfonyloxybenzoate in 1 h was achieved (entry
1). Using 10 mol % PPh3 (entry 2) or PTol3 (entry 3) as the coligand
provided 100 and 97% yield, respectively, after 4 h.
Supporting Information Available: Experimental details and
compound characterization. This material is available free of charge
References
(1) Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2005.
(2) Chen, H. Y.; Hartwig, J. F. Angew. Chem., Int. Ed. 1999, 38, 3391.
(3) (a) Chen, H. Y.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000,
287, 1995. (b) Shimada, S.; Batsanov, A. S.; Howard, J. A. K.; Marder,
T. B. Angew. Chem., Int. Ed. 2001, 40, 2168.
Table 3. Optimization of Catalyst and Zn Additive Loading in the
NiCl2(dppp)/dppf-Catalyzed Neopentylglycolborylation of Aryl
Mesylates
(4) (a) Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R., III.
Science 2002, 295, 305. (b) Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyama,
T.; Miyaura, N. Tetrahedron Lett. 2002, 43, 5649. (c) Ishiyama, T.; Takagi,
J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem.
Soc. 2002, 124, 390. (d) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama,
T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263. (e)
Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434.
(f) Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F. Org. Lett. 2007, 9,
761. (g) Ishiyama, T.; Nobuta, Y.; Hartwig, J. F.; Miyaura, N. Chem.
Commun. 2003, 2924. (h) Murphy, J. M.; Tzschucke, C. C.; Hartwig, J. F.
Org. Lett. 2007, 9, 757. (i) Chotana, G. A.; Rak, M. A.; Smith, M. R., III.
J. Am. Chem. Soc. 2005, 127, 10539. (j) Boebel, T. A.; Hartwig, J. F. J. Am.
Chem. Soc. 2008, 130, 7534. (k) Kawamorita, S.; Ohmiya, H.; Hara, K.;
Fukuoka, A.; Sawamura, M. J. Am. Chem. Soc. 2009, 131, 5058.
(5) (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
(b) Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. Tetrahedron Lett. 1997,
38, 3447. (c) Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57,
9813. (d) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271. (e) Murata,
M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458. (f) Murata,
M.; Sambommatsu, T.; Watanabe, S.; Masuda, Y. Synlett 2006, 1867. (g)
Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000,
65, 164.
convna/yieldb (%)
entry
catalyst (%)
ligand (%) equiv of Zn
1 h
2 h
4 h
7 h
1
2
3
4
5
6
7
8
NiCl2(dppp)(5) dppf (10)
NiCl2(dppp)(3) dppf (6)
NiCl2(dppp)(2) dppf (4)
NiCl2(dppp)(5) dppf (10)
NiCl2(dppp)(5) dppf (10)
NiCl2(dppp)(5) dppf (10)
2
2
2
1.5
1
100/100
-
-
-
-
-
46/46
-
-
-
0/0
-
95/95 100/100
63/63 86/86 100/100
100/98
-
-
100/95
100/91
0/0
-
-
0.5
2
2
-
-
-
-
-
0/0
-
0/0
30/30
NiCl2(dppp)(5)
-
a Conversion calculated from GC. b Yield determined by GC.
(6) (a) Billingsley, K. L.; Buchwald, S. L. J. Org. Chem. 2008, 73, 5589. (b)
Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem., Int. Ed.
2007, 46, 5359.
(7) Morgan, A. B.; Jurs, J. L.; Tour, J. M. J. Appl. Polym. Sci. 2000, 76, 1257.
(8) (a) Rosen, B. M.; Huang, C.; Percec, V. Org. Lett. 2008, 10, 2597. (b)
Wilson, D. A.; Wilson, C. J.; Rosen, B. M.; Percec, V. Org. Lett. 2008,
10, 4879. (c) Moldoveanu, C.; Wilson, D. A.; Wilson, C. J.; Corcoran, P.;
Rosen, B. M.; Percec, V. Org. Lett. 2009, 11, 4974.
(9) Percec, V.; Golding, G. M.; Smidrkal, J.; Weichold, O. J. Org. Chem. 2004,
69, 3447.
(10) (a) Percec, V.; Bae, J. Y.; Zhao, M. Y.; Hill, D. H. J. Org. Chem. 1995,
60, 176. (b) Percec, V.; Bae, J. Y.; Hill, D. H. J. Org. Chem. 1995, 60,
6895. (c) Percec, V.; Bae, J. Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060.
(d) Percec, V.; Bae, J. Y.; Zhao, M. Y.; Hill, D. H. J. Org. Chem. 1995,
60, 1066. (e) Percec, V.; Won, B. C.; Peterca, M.; Heiney, P. A. J. Am.
Chem. Soc. 2007, 129, 11265.
A control experiment was performed in which only Zn, neo-
pentylglycolborane, Et3N, and methyl 4-methanesulfonyloxyben-
zoate were heated in toluene (Table 3, entry 7). Without the Ni
catalyst, no borylation was observed, indicating the role of Zn as
an additive, presumably as a reductant. As expected, subsequent
addition of the Ni catalyst to this system allowed the borylation to
commence (entry 8). Ideally, low catalyst and reductant loadings
are desired. With 5 mol % NiCl2(dppp), 10 mol % dppf, and 2
equiv of Zn, quantitative borylation of methyl 4-methanesulfony-
loxybenzoate was achieved in 1 h (entry 1). Reducing the catalyst
loading level to 3 mol % NiCl2 (dppp) and 6 mol % dppf resulted
in a slower reaction that achieved complete conversion after 4 h
JA910808X
9
J. AM. CHEM. SOC. VOL. 132, NO. 6, 2010 1801