10.1002/chem.201604602
Chemistry - A European Journal
COMMUNICATION
expect this study to provide further understanding for the initiation
process in the cross-coupling reaction promoted by small organic
molecules, as well as to present a general and efficient radical
initiation system for this type of reactions.
Table 3. Kinetic isotope study
Acknowledgements
The National Natural Science Foundation of China (Grant No.
21390403) and the Thousand Talents Plan for Young
Professionals are acknowledged for financial support. The
technology platform of CBMS is acknowledged for providing
instrumentation.
Keywords: cross-coupling • N-methyl aniline • radical initiation •
electron donor • homolytic aromatic substitution
In light of the above experimental results, a plausible
mechanism for the activation of aryl halide by N-methylaniline was
proposed (Scheme 2). N-methyl aniline is first deprotonated by t-
BuOK to form N-methylanilide anion, which then acts as an
electron donor to transfer an electron to aryl iodide, facilitating the
formation of the aryl radical. The generated N-centered radical is
then deprotonated by t-BuOK to form a radical anion, which is also
an electron donor to initiate the radical process. N-
methylideneaniline is produced as the end-product of N-
methylanilene, which after work-up was converted to aniline and
could be detected by GC-MS. The observed electronic effect on
the activity of substituted N-methylanilines (Figure 3) supported
this radical initiation mechanism, as the substituents on the phenyl
ring influence the activity of the involved electron donors. It is
worth noting that the PhNHNH2/t-BuOK promoted cross-coupling
reactions were proposed to have a similar radical initiation
process.[4i] The present study demonstrates that the key structural
feature for a successful promoter molecule might be the ArNH
moiety but not the N-N bond.
[1]
For books, see: a) F. Diederich, P. J. Stang, Metal-Catalyzed Cross-
Coupling Reactions, Wiley-VCH, Weinheim, 1998; b) S. Brase, A. de.
Meijere in Metal-Catalyzed Cross-Coupling Reactions (Eds: A. de.
Meijere, F. Diederich), Wiley-VCH, Weinheim, 2004; c) L. Ackermann,
Modern Arylation Methods, Wiley-VCH, Weinheim, 2009.
[2]
For selected reviews, see: a) J. Hassan, M. Sevignon, C. Gozzi, E.
Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359-1470; b) F. Kakiuchi,
N. Chatani, Adv. Synth. Catal. 2003, 345, 1077-1101; c) L. C. Campeau,
M. Parisien, A. Jean, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 581-590;
d) S. E. Denmark, C. S. Regens, Acc. Chem. Res. 2008, 41, 1486-1499;
e) B.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett 2008, 949-957; f) L. Ackermann,
R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 3698-3701; Angew.
Chem. Int. Ed. 2009, 48, 9792-9826; g) G. P. McGlacken, L. M. Bateman,
Chem. Soc. Rev. 2009, 38, 2447-246.
[3]
[4]
For reviews, see: a) S. Yanagisawa, K. Itami, ChemCatChem 2011, 3,
827-829; b) S. C. Pan, Beilstein. J. Org. Chem. 2012, 8, 1374-1384; c) L.
Wang, G. Yan, X. Zhang, Chin. J. Org. Chem. 2012, 32, 1864-1871; d)
T. L. Chan, Y. Wu, P. Y. Choy, F. Y. Kwong, Chem. Eur. J. 2013, 19,
15802-15814; e) V. P. Mehta, B. Punji, RSC Adv. 2013, 3, 11957-11986;
f) C.-L. Sun, Z.-J. Shi, Chem. Rev. 2014, 114, 9219-9280.
For selected examples, see: a) W. Liu, H. Cao, H. Zhang, H. Zhang, K.
H. Chung, C. He, H. Wang, F. Y. Kwong, A. Lei, J. Am. Chem. Soc. 2010,
132, 16737-16740; b) E. Shirakawa, K.-I. Itoh, T. Higashino, T. Hayashi,
J. Am. Chem. Soc. 2010, 132, 15537-15539; c) C.-L. Sun, Y.-F. Gu, W.-
P. Huang, Z.-J. Shi, Chem. Commun. 2011, 47, 9813-9815; d) Y. Wu, S.
M. Wong, F. Mao, T. L. Chan, F. Y. Kwong, Org. Lett. 2012, 14, 5306-
5309; e) S. Sharma, M. Kumar, V. Kumar, N. Kumar, Tetrahedron Lett.
2013, 54, 4868-4871; f) K.-S. Masters, S. Brase, Angew. Chem. 2013,
125, 899-903; Angew. Chem. Int. Ed. 2013, 52, 866-869; g) S. A, X. Liu,
H. Li, C. He, Y. Mu, Asian. J. Org. Chem. 2013, 2, 857-861; h) S. De, S.
Mishra, B. N. Kakde, D. Dey, A. Bisai, J. Org. Chem. 2013, 78, 7823-
7844; i) A. Dewanji, S. Murarka, D. P. Curran, A. Studer, Org. Lett, 2013,
15, 6102-6105; j) Y. Wu, P. Y. Choy, F. Y. Kwong, Org. Biomol. Chem.
2014, 12, 6820-6823; k) Q. Song, D. Zhang, Q. Zhu, Y. Xu, Org. Lett.
2014, 16, 5272-5274; l) W. Liu, R. Liu, Y. Bi, Tetrahedron 2015, 71, 2622-
2628;m) Z. Xu, L. Gao, L. Wang, M. Gong, W. Wang, R. Yuan, ACS Catal.
2015, 5, 45-50; n) M. P. Drapeau, I. Fabre, L. Grimaud, I. Ciofini, T.
Ollevier, M. Taillefer. Angew. Chem. 2015, 127, 10733-10737; Angew.
Chem. Int. Ed. 2015, 54, 10587-10591; o) Y. Gao, P. Tang, H. Zhou, W.
Zhang, H. Yang. N. Yan, G. Hu, D. Mei, J. Wang, D. Ma, Angew. Chem.
2016, 128, 3290-3294; Angew. Chem. Int. Ed. 2016, 55, 3124-3128; p)
R. Paira, B. Singh, P. K. Hota, J. Ahmed. S. C. San, J. P. Johnpeter, S.
K. Mandal, J. Org. Chem. 2016, 81, 2432-2441.
Scheme 2. Proposed radical initiation mechanism.
In conclusion, we have disclosed that N-methylanilines, which
are simple and easily available, could efficiently activate
iodoarenes in the presence of t-BuOK. This new and robust
radical initiation system could be employed in a series of aryl
radical related reactions, including inter-/intramolecular aryl-aryl
coupling, the Heck-type coupling, dehalogenation of iodoarenes,
and aryl alkoxycarbonylation reactions. Preliminary mechanistic
studies showed that single electron transfer from N-methylanilide
anion to the iodoarene was the key step in radical initiation. We
[5]
For examples, see: a) E. Shirakawa, X. Zhang, T. Hayashi, Angew.
Chem. 2011, 123, 4767-4770; Angew. Chem. Int. Ed. 2011, 50, 4671-
4674; b) C.-L. Sun, Y.-F. Gu, B. Wang, Z.-J. Shi, Chem. Eur. J. 2011, 17,
This article is protected by copyright. All rights reserved.