Please do not adjust margins
RSC Advances
Page 4 of 6
DOI: 10.1039/C6RA12746K
COMMUNICATION
Journal Name
protodeborylation of the 2-substituted arylboronic acid is the
primary reaction pathway observed.23
2
3
4
5
M. B. Gawande, V. D. B. Bonifacio, R. Luque, P. S. Branco and
R. S. Varma, Chem. Soc. Rev., 2013, 42, 5522-5551.
D. J. C. Constable, C. Jimenez-Gonzalez and R. K. Henderson,
Org. Process Res. Dev., 2007, 11, 133-137.
MOF-253-Pd(OAc)2 C2 also catalyses conjugate additions of
phenylboronic acid to additional cyclic and acyclic
β,β-
disubstituted enones. The addition of phenylboronic acid to 3-
methylcyclopent-2-en-1-one 1b forms ketone 2h in 95% yield.
The addition of phenylboronic acid to acyclic 4-methylpent-3-
en-2-one 1c generated ketone 2i in 83% yield. However,
additions of phenylboronic acid to 3-arylcyclohex-2-en-1-ones
and 3-methylcyclohept-2-en-1-one occurred in <10% yield in
the presence of MOF-253-Pd(OAc)2 C2. The poor reactivity of
these two enone substrates is consistent with analogous
reactions carried out in aqueous media and catalysed by a
(a) J. M. Crow, Chem. World, 2008,
Rev., 2005, 105, 3095-3165.
5, 62-65; (b) C. J. Li, Chem.
(a) G. E. Dobereiner and R. H. Crabtree, Chem. Rev., 2010,
110, 681-703; (b) G. C. Fortman and S. P. Nolan, Chem. Soc.
Rev., 2011, 40, 5151-5169; (c) D. J. Gorin, B. D. Sherry and F.
D. Toste, Chem. Rev., 2008, 108, 3351-3378; (d) S. Z. Tasker,
E. A. Standley and T. F. Jamison, Nature, 2014, 509, 299-309.
D. J. Cole-Hamilton, Science, 2003, 299, 1702-1706.
6
7
(a) A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov and F.
Verpoort, Chem. Soc. Rev., 2015, 44, 6804-6849; (b) A.
complex of 2,2′-bipyridine and palladium trifluoroacetate that
require higher catalyst and arylboronic acid loadings.
Attenuated rates for catalysis by C2 in combination with rates
of protodeborylation that remain consistent regardless of the
identity of the catalyst can lead to arene formation through
protodeborylation as the primary reaction pathway for these
more challenging substrates classes.
Dhakshinamoorthy and H. Garcia, Chem. Soc. Rev., 2012, 41
5262-5284; (c) K. Leus, Y. Y. Liu and P. Van Der Voort, Catal.
Rev, 2014, 56, 1-56; (d) M. Yoon, R. Srirambalaji and K. Kim,
,
Chem. Rev., 2012, 112, 1196-1231. (e) S. T. Madrahimov, J. R.
Gallagher, G. Zhang, Z. Meinhart, S. J. Garibay, M. Delferro, J.
T. Miller, O. K. Farha, J. T. Hupp, S. T. Nguyen, ACS Catal.,
2015, 5, 6713-6718. (f) C. M. McGuirk, M. J. Katz, C. L. Stern,
A. A. Sarjeant, J. T. Hupp, O. K. Farha, C. A. Mirkin, J. Am.
Chem. Soc., 2015, 137, 919-925.
Conclusions
8
(a) C. H. Bai, S. P. Jian, X. F. Yao and Y. W. Li, Catal. Sci.
In summary, we have established two palladium(II)-
functionalized bpy-MOFs, bpy-UiO-67-Pd(OAc)2 and MOF-253-
Pd(OAc)2, as competent catalysts for conjugate additions of
Technol., 2014, 4, 3261-3267; (b) L. Y. Chen, Z. Q. Gao and Y.
W. Li, Catal. Today, 2015, 245, 122-128; (c) L. Y. Chen, S.
Rangan, J. Li, H. F. Jiang and Y. W. Li, Green Chem., 2014, 16
3978-3985; (d) H. H. Fei and S. M. Cohen, Chem. Commun.,
,
arylboronic acids to
have also demonstrated that MOF-253-Pd(OAc)2 is a reusable
catalyst system that promotes additions of range of
arylboronic acid to -disubstituted enone reaction partners
to form ketones containing quaternary carbon centres. The
development of MOF-253-Pd(OAc)2 as platform for
β,β-disubstituted enones in water. We
2014, 50, 4810-4812; (e) M. Wang, B. Z. Yuan, T. M. Ma, H. F.
Jiang and Y. W. Li, RSC Adv., 2012, , 5528-5530.
a
2
β,β
9
(a) D. R. Sun, Y. H. Gao, J. L. Fu, X. C. Zeng, Z. N. Chen and Z.
H. Li, Chem. Commun., 2015, 51, 2645-2648; (b) C. Wang, Z.
G. Xie, K. E. deKrafft and W. L. Lin, J. Am. Chem. Soc., 2011,
133, 13445-13454.
a
transition-metal catalysis in water sets the stage for new
applications of this and related catalyst systems in the areas of
green catalysis. Studies to improve the catalytic activities and
stabilities of MOF-253-Pd(OAc)2 and additional metalated
derivatives for new catalytic transformations in aqueous
environments are on-going.
10 T. Zhang, K. Manna and W. B. Lin, J. Am. Chem. Soc., 2016,
138, 3241-3249.
11 F. Carson, S. Agrawal, M. Gustafsson, A. Bartoszewicz, F.
Moraga, X. D. Zou and B. Martin-Matute, Chem. Eur. J., 2012,
18, 15337-15344.
12 C. Wang, J. L. Wang and W. B. Lin, J. Am. Chem. Soc., 2012,
134, 19895-19908.
Acknowledgments
13 X. Yu and S. M. Cohen, Chem. Commun., 2015, 51, 9880-
9883.
We thank Iowa State University, the Iowa State University
Center for Catalysis, and the Ames Laboratory for supporting
this work. The Ames Laboratory is operated for the U.S.
Department of Energy by Iowa State University under contract
number DE-AC02-07CH11358. We thank Professor Gordon J.
Miller (Iowa State University) for use of PXRD instrumentation
in his group.
14 T. Toyao, K. Miyahara, M. Fujiwaki, T. H. Kim, S. Dohshi, Y.
Horiuchi and M. Matsuoka, J. Phys. Chem. C, 2015, 119
,
8131-8137.
15 (a) K. Manna, T. Zhang, F. X. Greene and W. B. Lin, J. Am.
Chem. Soc., 2015, 137, 2665-2673; (b) K. Manna, T. Zhang
and W. B. Lin, J. Am. Chem. Soc., 2014, 136, 6566-6569.
16 For recent examples of palladium-functionalized MOFs
containing linker units other than 2,2′-bipyridines, see: (a) J.
Notes and references
W. Brown, N. N. Jarenwattananon, T. Otto, J. L. Wang, S.
Gloggler and L. S. Bouchard, Catal. Commun., 2015, 65, 105-
107; (b) S. A. Burgess, A. Kassie, S. A. Baranowski, K. J.
Fritzsching, K. Schmidt-Rohr, C. M. Brown and C. R. Wade, J.
Am. Chem. Soc., 2016, 138, 1780-1783; (c) A.
1
(a) C. H. Christensen and J. K. Norskov, Science, 2010, 327,
278-279; (b) M. Poliakoff and P. Licence, Nature, 2007, 450
,
810-812; (c) G. A. Somorjai, A. M. Contreras, M. Montano
and R. M. Rioux, Proc. Natl. Acad. Sci. U.S.A., 2006, 103
,
10577-10583.
Dhakshinamoorthy, A. M. Asiri and H. Garcia, Chem. Soc.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins