hydrates lead to recognition by receptors on the surface of
designated cells.7 Consequently, a large number of antisense
conjugates have been prepared over the years, mostly involving
5′-conjugation due to the fact that 3′-modification is much less
straightforward. The alternative conjugation via a nucleobase
is more synthetically accessible but may interfere with Watson-
Crick base pairing and thus hybridization. Finally, a variety of
2′-substituted AONs has been described, in particular zwitte-
rionic derivatives, but no 2′-AON conjugates.
Conjugation of Nucleosides and Oligonucleotides
by [3+2] Cycloaddition
Anup M. Jawalekar,† Nico Meeuwenoord,‡
J. (Sjef) G. O. Cremers,† Herman S. Overkleeft,‡
Gijs A. van der Marel,‡ Floris P. J. T. Rutjes,† and
Floris L. van Delft*,†
Institute for Molecules and Materials, Radboud UniVersity
Nijmegen, ToernooiVeld 1, 6525 ED Nijmegen, The Netherlands,
and Leiden Institute of Chemistry, Bioorganic Chemistry,
Gorlaeus Laboratories, P.O. Box 9502,
Apart from antisense application, oligonucleotide conjugation
is also suitable for helical structure stabilization, e.g., with
intercalators or minor groove binders, or covalent attachment
of reporter groups, e.g., fluorescent, electrochemical, or spin
labels.8
2300 RA, Leiden, The Netherlands
We here wish to report the synthesis of 2′-azide or 2′-
acetylene modified adenosines as versatile building blocks for
application in the mild and efficient synthesis of a variety of
oligonucleotide hetero- and homoconjugates.
ReceiVed September 20, 2007
From the onset, a suitable technology for nucleotide conjuga-
tion appeared to be the Cu(I)-catalyzed Huisgen [3+2] cycload-
dition,9 a technique mild enough for bioconjugation of virus
capsid proteins,10 cell-surface labeling of E. coli,11 and protein
based profiling in living cells.12 On the basis of acetylene-
azide cycloaddition, triazole isosteres have been prepared of
A procedure is presented for copper(I)-catalyzed [3+2]
cycloaddition of nucleosides and nucleotides in near-
quantitative yield. Azido-alkyne cycloaddition was applied
for the preparation of a range of adenosine dimers and
derivatives with versatile functionality, as well as for the
smooth condensation of two oligonucleotide strands. The
described technology may find valuable application in the
synthesis of oligonucleotide dimers and conjugates.
(6) Shi, F.; Hoekstra, D. J. Controlled Release 2004, 97, 189-209.
(7) Manoharan, M. Antisense Nucleic Acid Drug DeV. 2002, 12, 103-
128.
(8) Zatepsin, T. S.; Stetsenko, D. A.; Gait, M. J.; Oretskaya, T. S. Bioconj.
Chem. 2005, 16, 471-489.
(9) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057-3064. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem., Int. Ed. 2002, 41, 2596-2599.
(10) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.;
Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192-3193.
(11) Link, A. J.; Tirrell, D. A. J. Am. Chem. Soc. 2003, 125, 11164-
11165.
Synthetic oligonucleotides have proven to be highly valuable
as antisense structures for the selective silencing of specific
genes.1,2 However, clinical use of oligonucleotides is still limited
to a single example, i.e., fomivirsen (Vitravene),3 due to
drawbacks regarding potency, delivery, and duration of action.4
Second-generation involving 2′-O-modification, morpholino, or
locked nucleic acid (LNA)-based structures4 shows promise but
a remaining hurdle involves the poor cell internalization (∼1-
2%) of oligonucleotides.5 A promising solution to the inefficient
delivery of oligonucleotides lies in conjugation, e.g., with
cholesterol or polycationic groups for improvement of cellular
association.6 Alternatively, conjugates with peptides or carbo-
(12) Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003,
125, 4686-4687.
(13) Bock, V. D.; Speijer, D.; Hiemstra, H.; van Maarseveen, J. H. Org.
Biomol. Chem. 2007, 5, 971-975 and references cited herein.
(14) Wilkinson, B. L.; Bornaghi, L. F.; Poulsen, S. A.; Houston, T. A.
Tetrahedron 2006, 62, 8115-8125.
(15) (a) Kuijpers, B. H. M.; Groothuys, S.; Keereweer, A. R.; Quaedflieg,
P. J. L. M.; Blaauw, R. H.; van Delft, F. L.; Rutjes, F. P. J. T. Org. Lett.
2004, 6, 3123-3126. (b) Dondoni, A.; Giovannini, P. P.; Massi, A. Org.
Lett. 2004, 6, 2929-2932. (c) Lin, H.; Walsh, C. T. J. Am. Chem. Soc.
2004, 126, 13998-14003.
(16) (a) Lazrek, H. B.; Engels, J. W.; Pfleiderer, W. Nucleosides
Nucleotides 1998, 17, 1851-1856. (b) Park, S. M.; Lee, Y. S.; Kim, B. H.
Chem. Commun. 2003, 2912-2913. (c) Gierlich, J. G.; Burley, G. A.;
Gramlich, P. M. E.; Hammond, D. M.; Carell, T. Org. Lett. 2006, 8, 3639-
3642. (d) Burley, G. A.; Gierlich, J.; Mofid, M. R.; Nir, H.; Tal, S.; Eichen,
Y.; Carell, T. J. Am. Chem. Soc. 2006, 128, 1398-1399. (e) Seela, F.;
Sirivolu, V. R. Chem. BiodiV. 2006, 3, 509-514. (f) Kosiova, I.; Kovackova,
S.; Kois, P. Tetrahedron 2007, 63, 312-320. (g) Seela, F.; Sirivolu, V. R.
HelV. Chim. Acta 2007, 90, 535-552.
(17) (a) Seo, T. S.; Li, Z.; Ruparel, H.; Ju, J. J. Org. Chem. 2003, 68,
609-612. (b) Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.;
Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003, 125, 9588-9589.
(c) Weller, R. L.; Rajski, S. R. Org. Lett. 2005, 7, 2141-2144. (d) Devaraj,
N. K.; Miller, G. P.; Ebina, W.; Kakaradov, B.; Collman, J. P.; Kool, E.
T.; Chidsey, C. E. D. J. Am. Chem. Soc. 2005, 127, 8600-8601. (e)
Bouillon, C.; Meyer, A.; Vidal, S.; Jochum, A.; Chevolot, Y.; Cloarec, J.-
P.; Praly, J.-P.; Vasseur, J.-J.; Morvan, F. J. Org. Chem. 2006, 71, 4700-
4702. (f) Meyer, A.; Bouillon, C.; Vidal, S.; Vasseur, J.-J.; Morvan, F.
Tetrahedron Lett. 2006, 47, 8867-8871. (g) Kosiova, I.; Kovackova, S.;
Kois, P. Tetrahedron 2007, 63, 312-320.
† Radboud University Nijmegen.
‡ Leiden Insitute of Chemistry.
(1) (a) Zamecnik, P. C.; Stephenson, M. L. Proc. Natl. Acad. Sci. U.S.A.
1978, 75, 280-284. (b) Stephenson, M. L.; Zamecnik, P. C. Proc. Natl.
Acad. Sci. U.S.A. 1978, 75, 285-288.
(2) (a) Muthiah, M. Antisense Nucleic Acid Drug. DeV. 2002, 12, 103-
128. (b) Aboul-Fadl, T. Curr. Med. Chem. 2005, 12, 2193-2214.
(3) (a) Bennett, C. F. Biochem. Pharmacol. 1998, 55, 9-19. (b) Jarvis,
L. M. Chem. Eng. News 2006, 13-18.
(4) Corey, D. R. Nature Chem. Biol. 2007, 3, 8-11.
(5) (a) Gray, G. D.; Basu, S.; Wickstrom, E. Biochem. Pharmacol. 1997,
53, 1465-1476. (b) Stein, C. A.; Tonkinson, J. L.; Zhang. L. M.; Yakubov,
L.; Gervasoni, J.; Taub, R.; Rotenberg, S. A. Biochemistry 1993, 32, 4855-
4861. (c) Bennett, C. F.; Chiang, M. Y.; Chan, H.; Shoemaker, J. E.;
Mirabelli, C. K. Mol. Pharmacol. 1992, 41, 1023-1033.
10.1021/jo702023s CCC: $40.75 © 2008 American Chemical Society
Published on Web 12/04/2007
J. Org. Chem. 2008, 73, 287-290
287